Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuguang Du is active.

Publication


Featured researches published by Yuguang Du.


Food Chemistry | 2008

Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats

Jiapei Wang; Jianen Hu; Jinzhe Cui; Xuefang Bai; Yuguang Du; Yuji Miyaguchi; Bingcheng Lin

Oyster (Crassostrea talienwhanensis Crosse) proteins were produced from fresh oyster and subsequently digested with pepsin. The separations were performed with a Sephadex LH-20 gel filtration chromatography and a RP-HPLC. A purified peptide with sequence Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe (VVYPWTQRF) was firstly isolated and characterized from oyster protein hydrolysate and its ACE inhibitory activity was determined with IC50 value of 66μmol/L in vitro. Stability study for ACE inhibitory activity showed that the isolated nonapeptide had the good heat and pH stability and strong enzyme-resistant properties against gastrointestinal proteases. Kinetic experiments demonstrated that inhibitory kinetic mechanism of this peptide was non-competitive and its Km and Ki values were calculated. The yield of this peptide from oyster proteins was 8.5%. Furthermore, the oyster protein hydrolysate (fraction II), prepared by pepsin treatment firstly exhibited antihypertensive activity when it was orally administered to spontaneously hypertensive rat (SHR) at a dose of 20mg/kg. These results demonstrated that the hydrolysate from oyster proteins prepared by pepsin treatment could serve as a source of peptides with antihypertensive activity.


Bioresource Technology | 2011

Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst

Fengli Yang; Qishun Liu; Xuefang Bai; Yuguang Du

5-Hydroxymethylfurfural (HMF) was produced from monosaccharide (fructose and glucose), polysaccharide (inulin) and the Jerusalem artichoke juice by a simple one-pot reaction including hydrolysis and dehydration using solid acid under mild condition. Hydrated niobium pentoxide (Nb(2)O(5)·nH(2)O(2)) after pretreatment showed high catalytic activities for dehydration of mono- and polysaccharide to HMF at 433 K in water-2-butanol (2:3 v/v) biphasic system, giving high HMF yield of 89% and 54% from fructose and inulin, respectively. The HMF yield was up to 74% and 65% when inulin and Jerusalem artichoke juice were hydrolyzed by exoinulinase. The solid acid made the process environment-friendly and energy-efficient to convert carbohydrates into bio-fuels and platform chemicals.


Electrophoresis | 2004

Determination of SARS-coronavirus by a microfluidic chip system.

Xiaomian Zhou; Dayu Liu; Runtao Zhong; Zhongpeng Dai; Dapeng Wu; Hui Wang; Yuguang Du; Zhinan Xia; Liping Zhang; Xiaodai Mei; Bingcheng Lin

We have developed a new experimental system based on a microfluidic chip to determine severe acute respiratory syndrome coronavirus (SARS‐CoV). The system includes a laser‐induced fluorescence microfluidic chip analyzer, a glass microchip for both polymerase chain reaction (PCR) and capillary electrophoresis, a chip thermal cycler based on dual Peltier thermoelectric elements, a reverse transcription‐polymerase chain reaction (RT‐PCR) SARS diagnostic kit, and a DNA electrophoretic sizing kit. The system allows efficient cDNA amplification of SARS‐CoV followed by electrophoretic sizing and detection on the same chip. To enhance the reliability of RT‐PCR on SARS‐CoV detection, duplex PCR was developed on the microchip. The assay was carried out on a home‐made microfluidic chip system. The positive and the negative control were cDNA fragments of SARS‐CoV and parainfluenza virus, respectively. The test results showed that 17 positive samples were obtained among 18 samples of nasopharyngeal swabs from clinically diagnosed SARS patients. However, 12 positive results from the same 18 samples were obtained by the conventional RT‐PCR with agarose gel electrophoresis detection. The SARS virus species can be analyzed with high positive rate and rapidity on the microfluidic chip system.


Peptides | 2006

Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin

Yike Yu; Jianen Hu; Yuji Miyaguchi; Xuefang Bai; Yuguang Du; Bingcheng Lin

Animal blood is potentially an untapped source of drugs and value-added food production. More than 400 million pigs are slaughtered each year but porcine blood is usually discarded in China. This study describes the isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from porcine hemoglobin. The most active hydrolysate was obtained from the peptic digestion of porcine hemoglobin. After the purification of ACE-inhibitory peptides with Sephadex LH-20 gel chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) on C(18) column, two active fractions were obtained. They were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). They were LGFPTTKTYFPHF and VVYPWT, corresponding to the 34-46 fragment of the alpha chain and the 34-39 fragment of the beta chain of porcine hemoglobin, with IC(50) values of 4.92 and 6.02 microM, respectively. They were the first found from porcine hemoglobin; in particular, LGFPTTKTYFPHF was a novel ACE-inhibitory peptide. In addition, the purified ACE inhibitors both competitively inhibited ACE, and maintained inhibitory activity even after incubation with gastrointestinal proteases. This suggests that these peptides might have a potential antihypertensive effect.


Glycoconjugate Journal | 2012

Potential roles of N-glycosylation in cell adhesion

Jianguo Gu; Tomoya Isaji; Qingsong Xu; Yoshinobu Kariya; Wei Gu; Tomohiko Fukuda; Yuguang Du

The functional units of cell adhesion are typically multiprotein complexes made up of three general classes of proteins; the adhesion receptors, the cell-extracellular matrix (ECM) proteins, and the cytoplasmic plaque/peripheral membrane proteins. The cell adhesion receptors are usually transmembrane glycoproteins (for example E-cadherin and integrin) that mediate binding at the extracellular surface and determine the specificity of cell-cell and cell-ECM recognition. E-cadherin-mediated cell-cell adhesion can be both temporally and spatially regulated during development, and represents a key step in the acquisition of the invasive phenotype for many tumors. On the other hand, integrin-mediated cell-ECM interactions play important roles in cytoskeleton organization and in the transduction of intracellular signals to regulate various processes such as proliferation, differentiation and cell migration. ECM proteins are typically large glycoproteins, including the collagens, fibronectins, laminins, and proteoglycans that assemble into fibrils or other complex macromolecular arrays. The most of these adhesive proteins are glycosylated. Here, we focus mainly on the modification of N-glycans of integrins and laminin-332, and a mutual regulation between cell adhesion and bisected N-glycan expression, to address the important roles of N-glycans in cell adhesion.


International Immunopharmacology | 2011

Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress

Ying Qiao; Xuefang Bai; Yuguang Du

Sepsis and its derivative syndromes are major causes of morbidity and mortality in the intensive care unit. Recently, lots of studies have shown that the progression of sepsis is attributed to redox imbalance and overproduction of proinflammatory cytokines. In previous studies, we have reported the anti-oxidative and anti-inflammatory effects of chitosan oligosaccharides in vitro. In the light of these findings, we applied the model of sepsis to mice by LPS injection to investigate whether chitosan oligosaccharides have a protective effect on LPS-induced sepsis. We found that treatment by chitosan oligosaccharides not only attenuated organ dysfunction but also improved survival rate after LPS injection. To further understand how it works, we examined several proinflammatory markers including neutrophil infiltration in organs and TNF-α and IL-1β in serum, and found that these cytokines were significantly reduced by chitosan oligosaccharide treatment. In addition to this, anti-oxidants including glutathione (GSH) and catalase (CAT) levels were depleted and malondialdehyde (MDA) levels were increased in LPS-induced sepsis, while chitosan oligosaccharides smoothed out the redox imbalance. Furthermore, we also assessed c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase signal activation by LPS-stimulation, and found both of them were attenuated by chitosan oligosaccharide treatment. Collectively, our data demonstrated that chitosan oligosaccharides can protect mice from the LPS challenge by virtue of anti-inflammatory effects as well as anti-oxidation properties, which might offer beneficial effects for patients with sepsis.


Journal of Biological Chemistry | 2012

Roles of N-Acetylglucosaminyltransferase III in Epithelial-to-Mesenchymal Transition Induced by Transforming Growth Factor β1 (TGF-β1) in Epithelial Cell Lines

Qingsong Xu; Tomoya Isaji; Yingying Lu; Wei Gu; Madoka Kondo; Tomohiko Fukuda; Yuguang Du; Jianguo Gu

Background: The inhibitory effects of GnT-III on cancer metastasis remain unclear. Results: GnT-III influenced EMT-like changes through not only prolongation of E-cadherin turnover but also suppression of β-catenin·p-Smad complex formation. Conclusion: GnT-III plays important roles in TGF-β-induced EMT-like changes. Significance: The expression of E-cadherin is regulated not only by transcriptional factors but also by post-transcriptional modifications. The epithelial-to-mesenchymal transition (EMT) plays crucial roles in embryonic development, wound healing, tissue repair, and cancer progression. Results of this study show how transforming growth factor β1 (TGF-β1) down-regulates expression of N-acetylglucosaminyltransferase III (GnT-III) during EMT-like changes. Treatment with TGF-β1 resulted in a decrease in E-cadherin expression and GnT-III expression, as well as its product, the bisected N-glycans, which was confirmed by erythro-agglutinating phytohemagglutinin lectin blot and HPLC analysis in human MCF-10A and mouse GE11 cells. In contrast with GnT-III, the expression of N-acetylglucosaminyltransferase V was slightly enhanced by TGF-β1 treatment. Changes in the N-glycan patterns on α3β1 integrin, one of the target proteins for GnT-III, were also confirmed by lectin blot analysis. To understand the roles of GnT-III expression in EMT-like changes, the MCF-10A cell was stably transfected with GnT-III. It is of particular interest that overexpression of GnT-III influenced EMT-like changes induced by TGF-β1, which was confirmed by cell morphological changes of phase contrast, immunochemical staining patterns of E-cadherin, and actin. In addition, GnT-III modified E-cadherin, which served to prolong E-cadherin turnover on the cell surface examined by biotinylation and pulse-chase experiments. GnT-III expression consistently inhibited β-catenin translocation from cell-cell contact into the cytoplasm and nucleus. Furthermore, the transwell assay showed that GnT-III expression suppressed TGF-β1-induced cell motility. Taken together, these observations are the first to clearly demonstrate that GnT-III affects cell properties, which in turn influence EMT-like changes, and to explain a molecular mechanism for the inhibitory effects of GnT-III on cancer metastasis.


Current Topics in Medicinal Chemistry | 2009

Low Molecular Weight and Oligomeric Chitosans and Their Bioactivities

Heng Yin; Yuguang Du; Junzeng Zhang

Chitosan is one of the most abundant marine-based biopolymers. Low molecular weight and oligomeric chitosans are water-soluble hydrolysates of chitosan. They have been shown to have a wide range of biological activities and industrial applications. In particular, low molecular weight and oligomeric chitosans have been reported to have the health benefits such as immunity regulation, anti-tumor, liver protection, blood lipids lowering, anti-diabetic, antioxidant and anti-obesity. In this paper, the preparation and analytical methods, and bioactivities of these low molecular weight and oligomeric chitosans were reviewed, with the latest progresses introduced and discussed.


Carbohydrate Research | 2009

Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro

Chuannan Xiong; Haige Wu; Peng Wei; Ma Pan; Yaqin Tuo; Isao Kusakabe; Yuguang Du

This study was performed to demonstrate the effects of deacetylated chitohexaose (hexamer) separated from a chitooligosaccharide (COS) mixture on tumor angiogenesis and its mechanism of action. Five fractions from dimer to hexamer were separated by a linear gradient solution of HCl on a cation-exchange resin. Then HCl was removed from the fractions by a charcoal column. The purity of the five fractions was analyzed by HPLC and the molecular masses were analyzed by MALDI-TOFMS. The hexamer expressed an inhibitory influence on CAM angiogenesis in a dose-dependent manner at concentrations of 6.25-50microg/egg. On further investigation, we found that the hexamer had no toxic effect on normal ECV304 cells, but could inhibit the proliferation and migration of tumor-induced ECV304 cells in a dose-dependent manner. The mechanism was demonstrated through the detection of mRNA expression of VEGF, MMP-9, TIMP-1, TIMP-2, and uPA by RT-PCR, which showed that the hexamer down-regulated the VEGF and uPA mRNA expressions in ECV304 cells, but up-regulated the TIMP-1 mRNA expression.


Biotechnology Letters | 2013

Biorefinery products from the inulin-containing crop Jerusalem artichoke

Lili Li; Li Li; Yipeng Wang; Yuguang Du; Song Qin

The polysaccharides in Jerusalem artichoke (JA) carry a substantial amount of energy that can be partly accessed through bioconversion into storable fuels. We review the potential for converting inulin into a variety of high value-added biorefinery products, including biofuels and biochemicals, and consider the feasibility of regarding JA as a model species of an inulin-rich crop. We discuss feedstock pretreatment, microorganisms used during fermentation, biorefinery products derived from JA, and how to enhance the economic competitiveness of JA as an energy crop.

Collaboration


Dive into the Yuguang Du's collaboration.

Top Co-Authors

Avatar

Xuefang Bai

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Heng Yin

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Zhao

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Qishun Liu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Bingcheng Lin

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Wenxia Wang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Qingsong Xu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Hongtao Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuguang Li

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Chengyu Tan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge