Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuguang Mu is active.

Publication


Featured researches published by Yuguang Mu.


Proteins | 2004

Energy landscape of a small peptide revealed by dihedral angle principal component analysis

Yuguang Mu; Phuong H. Nguyen; Gerhard Stock

A 100 ns molecular dynamics simulation of penta‐alanine in explicit water is performed to study the reversible folding and unfolding of the peptide. Employing a standard principal component analysis (PCA) using Cartesian coordinates, the resulting free‐energy landscape is found to have a single minimum, thus suggesting a simple, relatively smooth free‐energy landscape. Introducing a novel PCA based on a transformation of the peptide dihedral angles, it is found, however, that there are numerous free energy minima of comparable energy (≲ 1 kcal/mol), which correspond to well‐defined structures with characteristic hydrogen‐bonding patterns. That is, the true free‐energy landscape is actually quite rugged and its smooth appearance in the Cartesian PCA represents an artifact of the mixing of internal and overall motion. Well‐separated minima corresponding to specific conformational structures are also found in the unfolded part of the free energy landscape, revealing that the unfolded state of penta‐alanine is structured rather than random. Performing a connectivity analysis, it is shown that neighboring states are connected by low barriers of similar height and that each state typically makes transitions to three or four neighbor states. Several principal pathways for helix nucleation are identified and discussed in some detail. Proteins 2005.


Chemical Reviews | 2015

Amyloid β Protein and Alzheimer’s Disease: When Computer Simulations Complement Experimental Studies

Jessica Nasica-Labouze; Phuong H. Nguyen; Fabio Sterpone; Olivia Berthoumieu; Nicolae-Viorel Buchete; Sébastien Côté; Alfonso De Simone; Andrew J. Doig; Peter Faller; Angel E. Garcia; Alessandro Laio; Mai Suan Li; Simone Melchionna; Normand Mousseau; Yuguang Mu; Anant K. Paravastu; Samuela Pasquali; David J. Rosenman; Birgit Strodel; Bogdan Tarus; John H. Viles; Tong Zhang; Chunyu Wang; Philippe Derreumaux

Simulations Complement Experimental Studies Jessica Nasica-Labouze,† Phuong H. Nguyen,† Fabio Sterpone,† Olivia Berthoumieu,‡ Nicolae-Viorel Buchete, Sebastien Cote, Alfonso De Simone, Andrew J. Doig, Peter Faller,‡ Angel Garcia, Alessandro Laio, Mai Suan Li, Simone Melchionna, Normand Mousseau, Yuguang Mu, Anant Paravastu, Samuela Pasquali,† David J. Rosenman, Birgit Strodel, Bogdan Tarus,† John H. Viles, Tong Zhang,†,▲ Chunyu Wang, and Philippe Derreumaux*,†,□ †Laboratoire de Biochimie Theorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Universite Paris Diderot, Sorbonne Paris Cite, 13 rue Pierre et Marie Curie, 75005 Paris, France ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Universite de Toulouse, Universite Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland Deṕartement de Physique and Groupe de recherche sur les proteines membranaires (GEPROM), Universite de Montreal, C.P. 6128, succursale Centre-ville, Montreal, Quebec H3C 3T5, Canada Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom Department of Physics, Applied Physics, & Astronomy, and Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Julich GmbH, 52425 Julich, Germany School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Institut Universitaire de France, 75005 Paris, France


Chemical Physics | 2001

Hydrogen-bond lifetime measured by time-resolved 2D-IR spectroscopy: N-methylacetamide in methanol

Sander Woutersen; Yuguang Mu; Gerhard Stock; Peter Hamm

Abstract 2D vibrational spectroscopy is applied to investigate the equilibrium dynamics of hydrogen bonding of N-methylacetamide (NMA) dissolved in methanol-d4. For this particular solute–solvent system, roughly equal populations are found for two conformers of the solute–solvent complex, one of which forms a hydrogen bond from the Cue605O group of NMA to the surrounding solvent, and one of which does not. Using time-resolved 2D-IR spectroscopy on the amide I band of NMA, the exchange between both conformers is resolved. Equilibration of each conformer is completed after 4.5 ps, while the formation and breaking of the hydrogen bond occurs on a slower, 10–15 ps time scale. This interpretation is supported by classical molecular-dynamics simulations of NMA in methanol. The calculations predict a 64% population of the hydrogen-bonded conformer and an average hydrogen-bond lifetime of ≈12 ps.


Journal of Chemical Physics | 2002

Peptide conformational heterogeneity revealed from nonlinear vibrational spectroscopy and molecular-dynamics simulations

Sander Woutersen; Rolf Pfister; Peter Hamm; Yuguang Mu; Daniel S. Kosov; Gerhard Stock

Nonlinear time-resolved vibrational spectroscopy is used to compare spectral broadening of the amide I band of the small peptide trialanine with that of N-methylacetamide, a commonly used model system for the peptide bond. In contrast to N-methylacetamide, the amide I band of trialanine is significantly inhomogeneously broadened. Employing classical molecular-dynamics simulations combined with density-functional-theory calculations, the origin of the spectral inhomogeneity is investigated. While both systems exhibit similar hydrogen-bonding dynamics, it is found that the conformational dynamics of trialanine causes a significant additional spectral broadening. In particular, transitions between the poly(Gly)II and the αR conformations are identified as the main source of the additional spectral inhomogeneity of trialanine. The experimental and computational results suggest that trialanine adopts essentially two conformations: poly(Gly)II (80%) and αR (20%). The potential of the joint experimental and computational approach to explore conformational dynamics of peptides is discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Subpicosecond conformational dynamics of small peptides probed by two-dimensional vibrational spectroscopy

Sander Woutersen; Yuguang Mu; Gerhard Stock; Peter Hamm

The observation of subpicosecond fluctuations in the conformation of a small peptide in water is demonstrated. We use an experimental method that is specifically sensitive to conformational dynamics taking place on an ultrafast time scale. Complementary molecular-dynamics simulations confirm that the conformational fluctuations exhibit a subpicosecond component, the time scale and amplitude of which agree well with those derived from the experiment.


Nucleic Acids Research | 2007

Base-specific spin-labeling of RNA for structure determination

Nelly Piton; Yuguang Mu; Gerhard Stock; Thomas F. Prisner; Olav Schiemann; Joachim W. Engels

To facilitate the measurement of intramolecular distances in solvated RNA systems, a combination of spin-labeling, electron paramagnetic resonance (EPR), and molecular dynamics (MD) simulation is presented. The fairly rigid spin label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA) was base and site specifically introduced into RNA through a Sonogashira palladium catalyzed cross-coupling on column. For this purpose 5-iodo-uridine, 5-iodo-cytidine and 2-iodo-adenosine phosphoramidites were synthesized and incorporated into RNA-sequences. Application of the recently developed ACE® chemistry presented the main advantage to limit the reduction of the nitroxide to an amine during the oligonucleotide automated synthesis and thus to increase substantially the reliability of the synthesis and the yield of labeled oligonucleotides. 4-Pulse Electron Double Resonance (PELDOR) was then successfully used to measure the intramolecular spin–spin distances in six doubly labeled RNA-duplexes. Comparison of these results with our previous work on DNA showed that A- and B-Form can be differentiated. Using an all-atom force field with explicit solvent, MD simulations gave results in good agreement with the measured distances and indicated that the RNA A-Form was conserved despite a local destabilization effect of the nitroxide label. The applicability of the method to more complex biological systems is discussed.


Journal of Physical Chemistry B | 2013

Molecular Mechanism of the Inhibition of EGCG on the Alzheimer Aβ1–42 Dimer

Tong Zhang; Jian Zhang; Philippe Derreumaux; Yuguang Mu

Growing evidence supports that amyloid β (Aβ) oligomers are the major causative agents leading to neural cell death in Alzheimers disease. The polyphenol (-)-epigallocatechin gallate (EGCG) was recently reported to inhibit Aβ fibrillization and redirect Aβ aggregation into unstructured, off-pathway oligomers. Given the experimental challenge to characterize the structures of Aβ/EGCG complexes, we performed extensive atomistic replica exchange molecular dynamics simulations of Aβ1-42 dimer in the present and absence of EGCG in explicit solvent. Our equilibrium Aβ dimeric structures free of EGCG are consistent with the collision cross section from ion-mobility mass spectrometry and the secondary structure composition from circular dichroism experiment. In the presence of EGCG, the Aβ structures are characterized by increased inter-center-of-mass distances, reduced interchain and intrachain contacts, reduced β-sheet content, and increased coil and α-helix contents. Analysis of the free energy surfaces reveals that the Aβ dimer with EGCG adopts new conformations, affecting therefore its propensity to adopt fibril-prone states. Overall, this study provides, for the first time, insights on the equilibrium structures of Aβ1-42 dimer in explicit aqueous solution and an atomic picture of the EGCG-mediated conformational change on Aβ dimer.


Physical Review Letters | 2008

Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules.

Liang Dai; Yuguang Mu; Lars Nordenskiöld; Johan R. C. van der Maarel

All atom molecular dynamics simulations with explicit water were done to study the interaction between two parallel double-stranded DNA molecules in the presence of the multivalent counterions putrescine (2+), spermidine (3+), spermine (4+) and cobalt hexamine (3+). The inter-DNA interaction potential is obtained with the umbrella sampling technique. The attractive force is rationalized in terms of the formation of ion bridges, i.e., multivalent ions which are simultaneously bound to the two opposing DNA molecules. The lifetime of the ion bridges is short on the order of a few nanoseconds.


Journal of Physical Chemistry B | 2012

Structures of Aβ17–42 trimers in isolation and with five small-molecule drugs using a hierarchical computational procedure

Yassmine Chebaro; Ping Jiang; Tong Zang; Yuguang Mu; Phuong H. Nguyen; Normand Mousseau; Philippe Derreumaux

The amyloid-β protein (Aβ) oligomers are believed to be the main culprits in the cytoxicity of Alzheimers disease (AD) and p3 peptides (Aβ17-42 fragments) are present in AD amyloid plaques. Many small-molecule or peptide-based inhibitors are known to slow down Aβ aggregation and reduce the toxicity in vitro, but their exact modes of action remain to be determined since there has been no atomic level of Aβ(p3)-drug oligomers. In this study, we have determined the structure of Aβ17-42 trimers both in aqueous solution and in the presence of five small-molecule inhibitors using a multiscale computational study. These inhibitors include 2002-H20, curcumin, EGCG, Nqtrp, and resveratrol. First, we used replica exchange molecular dynamics simulations coupled to the coarse-grained (CG) OPEP force field. These CG simulations reveal that the conformational ensemble of Aβ17-42 trimer can be described by 14 clusters with each peptide essentially adopting turn/random coil configurations, although the most populated cluster is characterized by one peptide with a β-hairpin at Phe19-Leu31. Second, these 14 dominant clusters and the less-frequent fibril-like state with parallel register of the peptides were subjected to atomistic Autodock simulations. Our analysis reveals that the drugs have multiple binding modes with different binding affinities for trimeric Aβ17-42 although they interact preferentially with the CHC region (residues 17-21). The compounds 2002-H20 and Nqtrp are found to be the worst and best binders, respectively, suggesting that the drugs may interfere at different stages of Aβ oligomerization. Finally, explicit solvent molecular dynamics of two predicted Nqtrp-Aβ17-42 conformations describe at atomic level some possible modes of action for Nqtrp.


Biophysical Journal | 2011

Resveratrol Inhibits the Formation of Multiple-Layered β-Sheet Oligomers of the Human Islet Amyloid Polypeptide Segment 22–27

Ping Jiang; Weifeng Li; Joan-Emma Shea; Yuguang Mu

The abnormal self-assembly of a number of proteins or peptides is a hallmark of >20 amyloidogenic diseases. Recent studies suggest that the pathology of amyloidogenesis can be attributed primarily to cytotoxic, soluble, intermediate oligomeric species rather than to mature amyloid fibrils. Despite the lack of available structural information regarding these transient species, many therapeutic efforts have focused on inhibiting the formation of these aggregates. One of the most successful approaches has been to use small molecules, many of which have been found to inhibit toxic species with high efficacy. A significant issue that remains to be resolved is the mechanism underlying the inhibitory effects of these molecules. In this article, we present extensive replica-exchange molecular dynamics simulations to study the early aggregation of the human islet amyloid polypeptide segment 22-27 in the presence and absence of the small-molecule inhibitor resveratrol. The simulations indicate that aggregation of these peptides was hindered by resveratrol via a mechanism of blocking the lateral growth of a single-layered β-sheet oligomer (rather than preventing growth by elongation along the fibril axis). Intersheet side-chain stacking, especially stacking of the aromatic rings, was blocked by the presence of resveratrol molecules, and the overall aggregation level was reduced.

Collaboration


Dive into the Yuguang Mu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weixin Xu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Gerhard Stock

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weifeng Li

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Nordenskiöld

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Phuong H. Nguyen

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge