Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuguang Zhang is active.

Publication


Featured researches published by Yuguang Zhang.


Scientific Reports | 2015

Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

Jing Cong; Yunfeng Yang; Xueduan Liu; Hui Lu; Xiao Liu; Jizhong Zhou; Diqiang Li; Huaqun Yin; Junjun Ding; Yuguang Zhang

The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.


Scientific Reports | 2015

Integrated metagenomics and network analysis of soil microbial community of the forest timberline.

Junjun Ding; Yuguang Zhang; Ye Deng; Jing Cong; Hui Lu; Xin Sun; Caiyun Yang; Tong Yuan; Joy D. Van Nostrand; Diqiang Li; Jizhong Zhou; Yunfeng Yang

The forest timberline responds quickly and markedly to climate changes, rendering it a ready indicator. Climate warming has caused an upshift of the timberline worldwide. However, the impact on belowground ecosystem and biogeochemical cycles remain elusive. To understand soil microbial ecology of the timberline, we analyzed microbial communities via 16s rRNA Illumina sequencing, a microarray-based tool named GeoChip 4.0 and a random matrix theory-based association network approach. We selected 24 sampling sites at two vegetation belts forming the timberline of Shennongjia Mountain in Hubei Province of China, a region with extraordinarily rich biodiversity. We found that temperature, among all of measured environmental parameters, showed the most significant and extensive linkages with microbial biomass, microbial diversity and composition at both taxonomic and functional gene levels, and microbial association network. Therefore, temperature was the best predictor for microbial community variations in the timberline. Furthermore, abundances of nitrogen cycle and phosphorus cycle genes were concomitant with NH4+-N, NO3−-N and total phosphorus, offering tangible clues to the underlying mechanisms of soil biogeochemical cycles. As the first glimpse at both taxonomic and functional compositions of soil microbial community of the timberline, our findings have major implications for predicting consequences of future timberline upshift.


Environmental Microbiology | 2015

The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry

Shanshan Liu; Feng Wang; Kai Xue; Bo Sun; Yuguang Zhang; Zhili He; Joy D. Van Nostrand; Jizhong Zhou; Yunfeng Yang

Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping.


Microbial Biotechnology | 2015

Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China

Yuguang Zhang; Jing Cong; Hui Lu; Guangliang Li; Yadong Xue; Ye Deng; Hui Li; Jizhong Zhou; Diqiang Li

Understanding biological diversity elevational pattern and the driver factors are indispensable to develop the ecological theories. Elevational gradient may minimize the impact of environmental factors and is the ideal places to study soil microbial elevational patterns. In this study, we selected four typical vegetation types from 1000 to 2800 m above the sea level on the northern slope of Shennongjia Mountain in central China, and analysed the soil bacterial community composition, elevational patterns and the relationship between soil bacterial diversity and environmental factors by using the 16S rRNA Illumina sequencing and multivariate statistical analysis. The results revealed that the dominant bacterial phyla were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Verrucomicrobia, which accounted for over 75% of the bacterial sequences obtained from tested samples, and the soil bacterial operational taxonomic unit (OTU) richness was a significant monotonous decreasing (P < 0.01) trend with the elevational increasing. The similarity of soil bacterial population composition decreased significantly (P < 0.01) with elevational distance increased as measured by the Jaccard and Bray–Curtis index. Canonical correspondence analysis and Mantel test analysis indicated that plant diversity and soil pH were significantly correlated (P < 0.01) with the soil bacterial community. Therefore, the soil bacterial diversity on Shennongjia Mountain had a significant and different elevational pattern, and plant diversity and soil pH may be the key factors in shaping the soil bacterial spatial pattern.


Journal of Environmental Sciences-china | 2014

Community structure and elevational diversity patterns of soil Acidobacteria.

Yuguang Zhang; Jing Cong; Hui Lu; Guangliang Li; Yuanyuan Qu; Xiujiang Su; Jizhong Zhou; Diqiang Li

Acidobacteria is one of the most dominant and abundant phyla in soil, and was believed to have a wide range of metabolic and genetic functions. Relatively little is known about its community structure and elevational diversity patterns. We selected four elevation gradients from 1000 to 2800 m with typical vegetation types of the northern slope of Shennongjia Mountain in central China. The vegetation types were evergreen broadleaved forest, deciduous broadleaved forest, coniferous forest and sub-alpine shrubs. We analyzed the soil acidobacterial community composition, elevational patterns and the relationship between Acidobacteria subdivisions and soil enzyme activities by using the 16S rRNA meta-sequencing technique and multivariate statistical analysis. The result found that 19 known subdivisions as well as an unclassified phylotype were presented in these forest sites, and Subdivision 6 has the highest number of detectable operational taxonomic units (OTUs). A significant single peak distribution pattern (P<0.05) between the OTU number and the elevation was observed. The Jaccard and Bray-Curtis index analysis showed that the soil Acidobacteria compositional similarity significantly decreased (P<0.01) with the increase in elevation distance. Mantel test analysis showed the most of the soil Acidobacteria subdivisions had the significant relationship (P<0.01) with different soil enzymes. Therefore, soil Acidobacteria may be involved in different ecosystem functions in global elemental cycles. Partial Mantel tests and CCA analysis showed that soil pH, soil temperature and plant diversity may be the key factors in shaping the soil Acidobacterial community structure.


Molecular Ecology | 2015

Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests

Junjun Ding; Yuguang Zhang; Mengmeng Wang; Xin Sun; Jing Cong; Ye Deng; Hui Lu; Tong Yuan; Joy D. Van Nostrand; Diqiang Li; Jizhong Zhou; Yunfeng Yang

As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as ‘The Oriental Botanic Garden’ for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits.


BMC Microbiology | 2013

Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan plateau

Yuguang Zhang; Zhenmei Lu; Shanshan Liu; Yunfeng Yang; Zhili He; Zuohua Ren; Jizhong Zhou; Diqiang Li

BackgroundGeoChip 3.0, a microbial functional gene array, containing ~28,000 oligonucleotide probes and targeting ~57,000 sequences from 292 functional gene families, provided a powerful tool for researching microbial community structure in natural environments. The alpine meadow is a dominant plant community in the Qinghai-Tibetan plateau, hence it is important to profile the unique geographical flora and assess the response of the microbial communities to environmental variables. In this study, Geochip 3.0 was employed to understand the microbial functional gene diversity and structure, and metabolic potential and the major environmental factors in shaping microbial communities structure of alpine meadow soil in Qinghai-Tibetan Plateau.ResultsA total of 6143 microbial functional genes involved in carbon degradation, carbon fixation, methane oxidation and production, nitrogen cycling, phosphorus utilization, sulphur cycling, organic remediation, metal resistance, energy process and other category were detected in six soil samples and high diversity was observed. Interestingly, most of the detected genes associated with carbon degradation were derived from cultivated organisms. To identify major environmental factors in shaping microbial communities, Mantel test and CCA Statistical analyses were performed. The results indicated that altitude, C/N, pH and soil organic carbon were significantly (P < 0.05) correlated with the microbial functional structure and a total of 80.97% of the variation was significantly explained by altitude, C/N and pH. The C/N contributed 38.2% to microbial functional gene variation, which is in accordance with the hierarchical clustering of overall microbial functional genes.ConclusionsHigh overall functional genes and phylogenetic diversity of the alpine meadow soil microbial communities existed in the Qinghai-Tibetan Plateau. Most of the genes involved in carbon degradation were derived from characterized microbial groups. Microbial composition and structures variation were significantly impacted by local environmental conditions, and soil C/N is the most important factor to impact the microbial structure in alpine meadow in Qinghai-Tibetan plateau.


Applied and Environmental Microbiology | 2017

Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss

Xian Zhang; Xueduan Liu; Yili Liang; Xue Guo; Yunhua Xiao; Liyuan Ma; Bo Miao; Hongwei Liu; Deliang Peng; Wenkun Huang; Yuguang Zhang; Huaqun Yin

ABSTRACT Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillusthermosulfidooxidans. Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains. IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross-kingdom HGT. Furthermore, genome streamlining may be a critical force in driving the evolution of microbial genomes. Taken together, this study provides insights into the importance of both HGT and gene loss in the evolution and diversification of bacterial genomes.


Genomics data | 2015

Analyses of the influencing factors of soil microbial functional gene diversity in tropical rainforest based on GeoChip 5.0.

Jing Cong; Xueduan Liu; Hui Lu; Han Xu; Yide Li; Ye Deng; Diqiang Li; Yuguang Zhang

To examine soil microbial functional gene diversity and causative factors in tropical rainforests, we used a microarray-based metagenomic tool named GeoChip 5.0 to profile it. We found that high microbial functional gene diversity and different soil microbial metabolic potential for biogeochemical processes were considered to exist in tropical rainforest. Soil available nitrogen was the most associated with soil microbial functional gene structure. Here, we mainly describe the experiment design, the data processing, and soil biogeochemical analyses attached to the study in details, which could be published on BMC microbiology Journal in 2015, whose raw data have been deposited in NCBIs Gene Expression Omnibus (accession number GSE69171).


Scientific Reports | 2016

Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient.

Yuguang Zhang; Jing Cong; Hui Lu; Ye Deng; Xiao Liu; Jizhong Zhou; Diqiang Li

Microorganisms play key roles in ecosystem processes and biogeochemical cycling, however, the relationship between soil microbial taxa diversity and their function in natural ecosystems is largely unknown. To determine how soil bacteria community and function are linked from the local to regional scale, we studied soil bacteria community composition, potential function and environmental conditions in natural and mature broadleaf forests along a latitudinal gradient in China, using the Illumina 16S rRNA sequencing and GeoChip technologies. The results showed strong biogeographic endemism pattern in soil bacteria were existed, and the spatial distance and climatic variables were the key controlling factors for this pattern. Therefore, dispersal limitation and environmental selection may represent two key processes in generating and maintaining the soil bacterial biogeographic pattern. By contrast, the soil bacterial potential function is highly convergent along the latitudinal gradient and there were highly differing bacterial community compositions, and the soil chemistry may include the main factors active in shaping the soil bacterial potential function. Therefore, the soil bacterial potential function may be affected by local gradients in resource availability, and predicting soil bacterial potential function requires knowledge of abiotic and biotic environmental factors.

Collaboration


Dive into the Yuguang Zhang's collaboration.

Top Co-Authors

Avatar

Jing Cong

Central South University

View shared research outputs
Top Co-Authors

Avatar

Hui Lu

Minzu University of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xueduan Liu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Ye Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huaqun Yin

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caiyun Yang

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge