Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuh Shiwa is active.

Publication


Featured researches published by Yuh Shiwa.


Nucleic Acids Research | 2011

Sequence-specific error profile of Illumina sequencers

Kensuke Nakamura; Taku Oshima; Takuya Morimoto; Shun Ikeda; Hirofumi Yoshikawa; Yuh Shiwa; Shu Ishikawa; Margaret C. Linak; Aki Hirai; Hiroki Takahashi; Md. Altaf-Ul-Amin; Naotake Ogasawara; Shigehiko Kanaya

We identified the sequence-specific starting positions of consecutive miscalls in the mapping of reads obtained from the Illumina Genome Analyser (GA). Detailed analysis of the miscall pattern indicated that the underlying mechanism involves sequence-specific interference of the base elongation process during sequencing. The two major sequence patterns that trigger this sequence-specific error (SSE) are: (i) inverted repeats and (ii) GGC sequences. We speculate that these sequences favor dephasing by inhibiting single-base elongation, by: (i) folding single-stranded DNA and (ii) altering enzyme preference. This phenomenon is a major cause of sequence coverage variability and of the unfavorable bias observed for population-targeted methods such as RNA-seq and ChIP-seq. Moreover, SSE is a potential cause of false single-nucleotide polymorphism (SNP) calls and also significantly hinders de novo assembly. This article highlights the importance of recognizing SSE and its underlying mechanisms in the hope of enhancing the potential usefulness of the Illumina sequencers.


Plant and Cell Physiology | 2011

Discovery of Genome-Wide DNA Polymorphisms in a Landrace Cultivar of Japonica Rice by Whole-Genome Sequencing

Yuko Arai-Kichise; Yuh Shiwa; Hideki Nagasaki; Kaworu Ebana; Hirofumi Yoshikawa; Masahiro Yano; Kyo Wakasa

Molecular breeding approaches are of growing importance to crop improvement. However, closely related cultivars generally used for crossing material lack sufficient known DNA polymorphisms due to their genetic relatedness. Next-generation sequencing allows the identification of a massive number of DNA polymorphisms such as single nucleotide polymorphisms (SNPs) and insertions–deletions (InDels) between highly homologous genomes. Using this technology, we performed whole-genome sequencing of a landrace of japonica rice, Omachi, which is used for sake brewing and is an important source for modern cultivars. A total of 229 million reads, each comprising 75 nucleotides of the Omachi genome, was generated with 45-fold coverage and uniquely mapped to 89.7% of the Nipponbare genome, a closely related cultivar. We identified 132,462 SNPs, 16,448 insertions and 19,318 deletions between the Omachi and Nipponbare genomes. An SNP array was designed to validate 731 selected SNPs, resulting in validation rates of 95 and 88% for the Omachi and Nipponbare genomes, respectively. Among the 577 SNPs validated in both genomes, 532 are entirely new SNP markers not previously reported between related rice cultivars. We also validated InDels on a part of chromosome 2 as DNA markers and successfully genotyped five japonica rice cultivars. Our results present the methodology and extensive data on SNPs and InDels available for whole-genome genotyping and marker-assisted breeding. The polymorphism information between Omachi and Nipponbare is available at NGRC_Rice_Omachi (http://www.nodai-genome.org/oryza_sativa_en.html).


DNA Research | 2012

Identification of Substrain-Specific Mutations by Massively Parallel Whole-Genome Resequencing of Synechocystis sp. PCC 6803

Yu Kanesaki; Yuh Shiwa; Naoyuki Tajima; Marie Suzuki; Satoru Watanabe; Naoki Sato; Masahiko Ikeuchi; Hirofumi Yoshikawa

The cyanobacterium, Synechocystis sp. PCC 6803, was the first photosynthetic organism whose genome sequence was determined in 1996 (Kazusa strain). It thus plays an important role in basic research on the mechanism, evolution, and molecular genetics of the photosynthetic machinery. There are many substrains or laboratory strains derived from the original Berkeley strain including glucose-tolerant (GT) strains. To establish reliable genomic sequence data of this cyanobacterium, we performed resequencing of the genomes of three substrains (GT-I, PCC-P, and PCC-N) and compared the data obtained with those of the original Kazusa strain stored in the public database. We found that each substrain has sequence differences some of which are likely to reflect specific mutations that may contribute to its altered phenotype. Our resequence data of the PCC substrains along with the proposed corrections/refinements of the sequence data for the Kazusa strain and its derivatives are expected to contribute to investigations of the evolutionary events in the photosynthetic and related systems that have occurred in Synechocystis as well as in other cyanobacteria.


BMC Genomics | 2011

Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi

Ryouka Kawahara-Miki; Kaoru Tsuda; Yuh Shiwa; Yuko Arai-Kichise; Takashi Matsumoto; Yu Kanesaki; Sen-ichi Oda; Shizufumi Ebihara; Shunsuke Yajima; Hirofumi Yoshikawa; Tomohiro Kono

BackgroundBecause the Japanese native cattle Kuchinoshima-Ushi have been isolated in a small island and their lineage has been intensely protected, it has been assumed to date that numerous and valuable genomic variations are conserved in this cattle breed.ResultsIn this study, we evaluated genetic features of this breed, including single nucleotide polymorphism (SNP) information, by whole-genome sequencing using a Genome Analyzer II. A total of 64.2 Gb of sequence was generated, of which 86% of the obtained reads were successfully mapped to the reference sequence (Btau 4.0) with BWA. On an average, 93% of the genome was covered by the reads and the number of mapped reads corresponded to 15.8-fold coverage across the covered region. From these data, we identified 6.3 million SNPs, of which more than 5.5 million (87%) were found to be new. Out of the SNPs annotated in the bovine sequence assembly, 20,432 were found in protein-coding regions containing 11,713 nonsynonymous SNPs in 4,643 genes. Furthermore, phylogenetic analysis using sequence data from 10 genes (more than 10 kbp) showed that Kuchinoshima-Ushi is clearly distinct from European domestic breeds of cattle.ConclusionsThese results provide a framework for further genetic studies in the Kuchinoshima-Ushi population and research on functions of SNP-containing genes, which would aid in understanding the molecular basis underlying phenotypic variation of economically important traits in cattle and in improving intrinsic defects in domestic cattle breeds.


Journal of Bacteriology | 2012

Complete Genome Sequence of Lactococcus lactis IO-1, a Lactic Acid Bacterium That Utilizes Xylose and Produces High Levels of l-Lactic Acid

Hiroaki Kato; Yuh Shiwa; Kenshiro Oshima; Miki Machii; Tomoko Araya-Kojima; Takeshi Zendo; Mariko Shimizu-Kadota; Masahira Hattori; Kenji Sonomoto; Hirofumi Yoshikawa

We report the complete genome sequence of Lactococcus lactis IO-1 (= JCM7638). It is a nondairy lactic acid bacterium, produces nisin Z, ferments xylose, and produces predominantly L-lactic acid at high xylose concentrations. From ortholog analysis with other five L. lactis strains, IO-1 was identified as L. lactis subsp. lactis.


Microbiology | 2013

Multiple rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis

Koichi Yano; Tetsuya Wada; Shota Suzuki; Kazumi Tagami; Takashi Matsumoto; Yuh Shiwa; Taichiro Ishige; Yasuhiro Kawaguchi; Kenta Masuda; Genki Akanuma; Hideaki Nanamiya; Hironori Niki; Hirofumi Yoshikawa; Fujio Kawamura

The number of copies of rRNA (rrn) operons in a bacterial genome differs greatly among bacterial species. Here we examined the phenotypic effects of variations in the number of copies of rRNA genes in the genome of Bacillus subtilis by analysis of eight mutant strains constructed to carry from two to nine copies of the rrn operon. We found that a decrease in the number of copies from ten to one increased the doubling time, and decreased the sporulation frequency and motility. The maximum levels for transformation activity were similar among the strains, although the competence development was significantly delayed in the strain with a single rrn operon. Normal sporulation only occurred if more than four copies of the rrn operon were present, although ten copies were needed for vegetative growth after germination of the spores. This behaviour was seen even though the intracellular level of ribosomes was similar among strains with four to ten copies of the rrn operon. Furthermore, ten copies of the rrn operon were needed for the highest swarming activity. We also constructed 21 strains that carried all possible combinations of two copies of the rrn operons, and found that these showed a range of growth rates and sporulation frequencies that all fell between those recorded for strains with one or three copies of the rrn operon. The results suggested that the copy number of the rrn operon has a major influence on cellular processes such as growth rate and sporulation frequency.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2

Masashi Saruhashi; Totan Kumar Ghosh; Kenta Arai; Yumiko Ishizaki; Kazuya Hagiwara; Kenji Komatsu; Yuh Shiwa; Keiichi Izumikawa; Harunori Yoshikawa; Taishi Umezawa; Yoichi Sakata; Daisuke Takezawa

Significance Plants can sense loss of water caused by drought and stimulate internal mechanisms for protecting cells from damage with the aid of the stress hormone abscisic acid (ABA). Analysis of a mutant of the basal land plant, the moss Physcomitrella patens, revealed that an impairment of a protooncogene Raf-like protein kinase, designated “ARK” (for “ABA and abiotic stress-responsive Raf-like kinase”), causes a loss of both ABA sensitivity and osmotic stress tolerance. We show evidence that ARK has a role in integrating ABA and osmotic signals upstream of the sucrose nonfermenting 1-related protein kinase2, known to be a central regulator of stress signaling in plants. Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated “ARK” (for “ABA and abiotic stress-responsive Raf-like kinase”) plays an essential role in the activation of SnRK2. ARK encoded by a single gene in P. patens belongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms.


BMC Genomics | 2014

Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo

Kenji Nakahigashi; Yuki Takai; Yuh Shiwa; Mei Wada; Masayuki Honma; Hirofumi Yoshikawa; Masaru Tomita; Akio Kanai; Hirotada Mori

BackgroundThere is a significant difference between synonymous codon usage in many organisms, and it is known that codons used more frequently generally showed efficient decoding rate. At the gene level, however, there are conflicting reports on the existence of a correlation between codon adaptation and translation efficiency, even in the same organism.ResultsTo resolve this issue, we cultured Escherichia coli under conditions designed to maintain constant levels of mRNA and protein and subjected the cells to ribosome profiling (RP) and mRNA-seq analyses. We showed that the RP results correlated more closely with protein levels generated under similar culture conditions than with the mRNA abundance from the mRNA-seq. Our result indicated that RP/mRNA ratio could be used as a measure of translation efficiency at gene level. On the other hand, the RP data showed that codon-specific ribosome density at the decoding site negatively correlated with codon usage, consistent with the hypothesis that preferred codons display lower ribosome densities due to their faster decoding rate. However, highly codon-adapted genes showed higher ribosome densities at the gene level, indicating that the efficiency of translation initiation, rather than higher elongation efficiency of preferred codons, exerted a greater effect on ribosome density and thus translation efficiency.ConclusionsThese findings indicate that evolutionary pressure on highly expressed genes influenced both codon bias and translation initiation efficiency and therefore explains contradictory findings that codon usage bias correlates with translation efficiency of native genes, but not with the artificially created gene pool, which was not subjected to evolution pressure.


PLOS ONE | 2014

Genome-Wide DNA Polymorphisms in Seven Rice Cultivars of Temperate and Tropical Japonica Groups

Yuko Arai-Kichise; Yuh Shiwa; Kaworu Ebana; Mari Shibata-Hatta; Hirofumi Yoshikawa; Masahiro Yano; Kyo Wakasa

Elucidation of the rice genome is expected to broaden our understanding of genes related to the agronomic characteristics and the genetic relationship among cultivars. In this study, we conducted whole-genome sequencings of 6 cultivars, including 5 temperate japonica cultivars and 1 tropical japonica cultivar (Moroberekan), by using next-generation sequencing (NGS) with Nipponbare genome as a reference. The temperate japonica cultivars contained 2 sake brewing (Yamadanishiki and Gohyakumangoku), 1 landrace (Kameji), and 2 modern cultivars (Koshihikari and Norin 8). Almost >83% of the whole genome sequences of the Nipponbare genome could be covered by sequenced short-reads of each cultivar, including Omachi, which has previously been reported to be a temperate japonica cultivar. Numerous single nucleotide polymorphisms (SNPs), insertions, and deletions were detected among the various cultivars and the Nipponbare genomes. Comparison of SNPs detected in each cultivar suggested that Moroberekan had 5-fold more SNPs than the temperate japonica cultivars. Success of the 2 approaches to improve the efficacy of sequence data by using NGS revealed that sequencing depth was directly related to sequencing coverage of coding DNA sequences: in excess of 30× genome sequencing was required to cover approximately 80% of the genes in the rice genome. Further, the contigs prepared using the assembly of unmapped reads could increase the value of NGS short-reads and, consequently, cover previously unavailable sequences. These approaches facilitated the identification of new genes in coding DNA sequences and the increase of mapping efficiency in different regions. The DNA polymorphism information between the 7 cultivars and Nipponbare are available at NGRC_Rices_Build1.0 (http://www.nodai-genome.org/oryza_sativa_en.html).


International Journal of Evolutionary Biology | 2012

Whole-Genome Profiling of a Novel Mutagenesis Technique Using Proofreading-Deficient DNA Polymerase δ.

Yuh Shiwa; Sanae Fukushima-Tanaka; Ken Kasahara; Takayuki Horiuchi; Hirofumi Yoshikawa

A novel mutagenesis technique using error-prone DNA polymerase δ (polδ), the disparity mutagenesis model of evolution, has been successfully employed to generate novel microorganism strains with desired traits. However, little else is known about the spectra of mutagenic effects caused by disparity mutagenesis. We evaluated and compared the performance of the polδ MKII mutator, which expresses the proofreading-deficient and low-fidelity polδ, in Saccharomyces cerevisiae haploid strain with that of the commonly used chemical mutagen ethyl methanesulfonate (EMS). This mutator strain possesses exogenous mutant polδ supplied from a plasmid, tthereby leaving the genomic one intact. We measured the mutation rate achieved by each mutagen and performed high-throughput next generation sequencing to analyze the genome-wide mutation spectra produced by the 2 mutagenesis methods. The mutation frequency of the mutator was approximately 7 times higher than that of EMS. Our analysis confirmed the strong G/C to A/T transition bias of EMS, whereas we found that the mutator mainly produces transversions, giving rise to more diverse amino acid substitution patterns. Our present study demonstrated that the polδ MKII mutator is a useful and efficient method for rapid strain improvement based on in vivo mutagenesis.

Collaboration


Dive into the Yuh Shiwa's collaboration.

Top Co-Authors

Avatar

Hirofumi Yoshikawa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Satoru Watanabe

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Taichiro Ishige

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yu Kanesaki

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junichi Nakagawa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariko Shimizu-Kadota

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Naoto Tanaka

Tokyo University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge