Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where he Yu is active.

Publication


Featured researches published by he Yu.


Scientific Reports | 2015

Impacts of the Three Gorges Dam on microbial structure and potential function

Qingyun Yan; Yonghong Bi; Ye Deng; Zhili He; Liyou Wu; Joy D. Van Nostrand; Zhou Shi; Jinjin Li; Xi Wang; Zhengyu Hu; Yuhe Yu; Jizhong Zhou

The Three Gorges Dam has significantly altered ecological and environmental conditions within the reservoir region, but how these changes affect bacterioplankton structure and function is unknown. Here, three widely accepted metagenomic tools were employed to study the impact of damming on the bacterioplankton community in the Xiangxi River. Our results indicated that bacterioplankton communities were both taxonomically and functionally different between backwater and riverine sites, which represent communities with and without direct dam effects, respectively. There were many more nitrogen cycling Betaproteobacteria (e.g., Limnohabitans), and a higher abundance of functional genes and KEGG orthology (KO) groups involved in nitrogen cycling in the riverine sites, suggesting a higher level of bacterial activity involved in generating more nitrogenous nutrients for the growth of phytoplankton. Additionally, the KO categories involved in carbon and sulfur metabolism, as well as most of the detected functional genes also showed clear backwater and riverine patterns. As expected, these diversity patterns all significantly correlated with environmental characteristics, confirming that the bacterioplankton communities in the Xiangxi River were really affected by environmental changes from the Three Gorges Dam. This study provides a first comparative metagenomic insight for evaluating the impacts of the large dam on microbial function.


FEMS Microbiology Ecology | 2014

Factors influencing the grass carp gut microbiome and its effect on metabolism

Jiajia Ni; Qingyun Yan; Yuhe Yu; Tanglin Zhang

Gut microbiota have attracted extensive attention recently because of their important role in host metabolism, immunity and health maintenance. The present study focused on factors affecting the gut microbiome of grass carp (Ctenopharyngodon idella) and further explored the potential effect of the gut microbiome on metabolism. Totally, 43.39 Gb of screened metagenomic sequences obtained from 24 gut samples were fully analysed. We detected 1228 phylotypes (116 Archaea and 1112 Bacteria), most of which belonged to the phyla Firmicutes, Proteobacteria and Fusobacteria. Totally, 41335 of the detected open reading frames (ORFs) were matched to Kyoto Encyclopedia of Genes and Genomes pathways, and carbohydrate and amino acid metabolism was the main matched pathway deduced from the annotated ORFs. Redundancy analysis based on the phylogenetic composition and gene composition of the gut microbiome indicated that gut fullness and feeding (i.e. ryegrass vs. commercial feed, and pond-cultured vs. wild) were significantly related to the gut microbiome. Moreover, many biosynthesis and metabolism pathways of carbohydrates, amino acids and lipids were significantly enhanced by the gut microbiome in ryegrass-fed grass carp. These findings suggest that the metabolic role played by the gut microbiome in grass carp can be affected by feeding. These findings contribute to the field of fish gut microbial ecology and also provide a basis for follow-up functional studies.


Journal of Microbiology | 2012

Host Species as a Strong Determinant of the Intestinal Microbiota of Fish Larvae

Xuemei Li; Yuhe Yu; Weisong Feng; Qingyun Yan; Yingchun Gong

We investigated the influence of host species on intestinal microbiota by comparing the gut bacterial community structure of four cohabitating freshwater fish larvae, silver carp, grass carp, bighead carp, and blunt snout bream, using denaturing gradient gel electrophoresis (DGGE) of the amplified 16S and 18S rRNA genes. Similarity clustering indicated that the intestinal microbiota derived from these four fish species could be divided into four groups based on 16S rRNA gene similarity, whereas the eukaryotic 18S rRNA genes showed no distinct groups. The water sample from the shared environment contained microbiota of an independent group as indicated by both 16S and 18S rRNA genes segments. The bacterial community structures were visualized using rank-abundance plots fitted with linear regression models. Results showed that the intestinal bacterial evenness was significantly different between species (P<0.05) and between species and the water sample (P<0.01). Thirty-five relatively dominant bands in DGGE patterns were sequenced and grouped into five major taxa: Proteobacteria (26), Actinobacteria (5), Bacteroidetes (1), Firmicutes (2), and Cyanobacterial (1). Six eukaryotes were detected by sequencing 18S rRNA genes segments. The present study suggests that the intestines of the four fish larvae, although reared in the same environment, contained distinct bacterial populations, while intestinal eukaryotic microorganisms were almost identical.


Journal of Eukaryotic Microbiology | 2001

Phylogenetic Relationships of the Subclass Peritrichia (Oligohymenophorea, Ciliophora) with Emphasis on the Genus Epistylis, Inferred from Small Subunit rRNA Gene Sequences

Wei Miao; Yuhe Yu; Yunfen Shen

Abstract The peritrichs have been recognized as a higher taxon of ciliates since 1968. However, the phylogenetic relationships among them are still unsettled, and their placement within the class Oligohymenophorea has only been supported by the analysis of the small subunit rRNA gene sequence of Opisthonecta henneguyi. DNA was isolated directly from field-sampled species for PCR, and was used to resolve relationships within the genus Epistylis and to confirm the stability of the placement of peritrichs. Small subunit rRNA gene sequences of Epistylis plicatilis, Epistylis urceolata, Epistylis chrysemydis, Epistylis hentscheli, Epistylis wenrichi, and Vorticella campanula were sequenced and analyzed using both distance-matrix and maximum-parsimony methods. In phylogenetic trees, the monophyly of both the genus Epistylis and the subclass Peritrichia was strongly supported, while V. campanula clustered with Vorticella microstoma. The topology in which E. plicatilis and E. hentscheli formed a strongly supported sister clade to E. urceolata, E. chrysemydis, and E. wenrichi was consistent with variations in the thickness of the peristomial lip. We concluded that the peristomial area, especially the peristomial lip, might be the important phylogenetic character within the genus Epistylis.


FEMS Microbiology Ecology | 2008

Spatiotemporal heterogeneity of plankton communities in Lake Donghu, China, as revealed by PCR-denaturing gradient gel electrophoresis and its relation to biotic and abiotic factors

Yuhe Yu; Qingyun Yan; Weisong Feng

The 16S and 18S rRNA genes of planktonic organisms derived from five stations with nutrient gradients in Lake Donghu, China, were studied by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, and the relationships between the genetic diversity of the plankton community and biotic/abiotic factors are discussed. The concentrations of total nitrogen (TN), total phosphorus (TP), NH(4)-N and As were found to be significantly related (P<0.05) to morphological composition of the plankton community. Both chemical and morphological analyses suggested that temporal heterogeneity was comparatively higher than spatial heterogeneity in Lake Donghu. Although the morphological composition was not identical to the DGGE fingerprints in characterizing habitat similarity, the two strongest eutrophic stations (I and II) were always initially grouped into one cluster. Canonical correspondence analysis suggested that the factors strongly correlated with the first two ordination axes were seasonally different. The concentrations of TN and TP and the densities of rotifers and crustaceans were generally the main factors related to the DGGE patterns of the plankton communities. The study suggested that genetic diversity as depicted by metagenomic techniques (such as PCR-DGGE fingerprinting) is a promising tool for ecological study of plankton communities and that such techniques are likely to play an increasingly important role in assessing the environmental conditions of aquatic habitats.


PLOS ONE | 2013

Gut Microbiota Contributes to the Growth of Fast-Growing Transgenic Common Carp (Cyprinus carpio L.)

Xuemei Li; Qingyun Yan; Shouqi Xie; Wei Hu; Yuhe Yu; Zihua Hu

Gut microbiota has shown tight and coordinated connection with various functions of its host such as metabolism, immunity, energy utilization, and health maintenance. To gain insight into whether gut microbes affect the metabolism of fish, we employed fast-growing transgenic common carp (Cyprinus carpio L.) to study the connections between its large body feature and gut microbes. Metagenome-based fingerprinting and high-throughput sequencing on bacterial 16S rRNA genes indicated that fish gut was dominated by Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes, which displayed significant differences between transgenic fish and wild-type controls. Analyses to study the association of gut microbes with the fish metabolism discovered three major phyla having significant relationships with the host metabolic factors. Biochemical and histological analyses indicated transgenic fish had increased carbohydrate but decreased lipid metabolisms. Additionally, transgenic fish has a significantly lower Bacteroidetes:Firmicutes ratio than that of wild-type controls, which is similar to mammals between obese and lean individuals. These findings suggest that gut microbiotas are associated with the growth of fast growing transgenic fish, and the relative abundance of Firmicutes over Bacteroidetes could be one of the factors contributing to its fast growth. Since the large body size of transgenic fish displays a proportional body growth, which is unlike obesity in human, the results together with the findings from others also suggest that the link between obesity and gut microbiota is likely more complex than a simple Bacteroidetes:Firmicutes ratio change.


Journal of Eukaryotic Microbiology | 2006

Reevaluation of the phylogenetic relationship between mobilid and sessilid peritrichs (Ciliophora, Oligohymenophorea) based on small subunit rRNA genes sequences.

Yingchun Gong; Yuhe Yu; Eduardo Villalobo; Fei-Yun Zhu; Wei Miao

ABSTRACT. Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.


Journal of Eukaryotic Microbiology | 2004

Phylogenetic relationships of the subclass Peritrichia (Oligohymenophorea, Ciliophora) inferred from small subunit rRNA gene sequences

Wei Miao; Wei-Song Fen; Yuhe Yu; Xiyuan Zhang; Yunfen Shen

Abstract The phylogenetic relationships among peritrichs remain unresolved. In this study, the complete small subunit rRNA (SSrRNA) gene sequences of seven species (Epistylis galea, Campanella umbellaria, Carchesium polypinum, Zoothamnium arbuscula, Vaginicola crystallina, Ophrydium versatile, and Opercularia microdiscum) were determined. Trees were constructed using distance-matrix, maximum-likelihood and maximum-parsimony methods, all of which strongly supported the monophyly of the subclass Peritrichia. Within the peritrichs, 1) E. galea grouped with Opercularia microdiscum and Campanella umbellaria but not the other Epistylis species, which indicates that the genus Epistylis might not be monophyletic; 2) the topological position of Carchesium and Campanella suggested that Carchesium should be placed in the family Zoothamniidae, or be elevated to a higher taxonomic rank, and that Campanella should be independent of the family Epistylididae, and probably be given a new rank; and 3) Opisthonecta grouped strongly with Astylozoon, which suggested that Opisthonecta species were not the ancestors of the stalked peritrichs.


Scientific Reports | 2013

How much metagenomic sequencing is enough to achieve a given goal

Jiajia Ni; Qingyun Yan; Yuhe Yu

Metagenomic studies have dramatically expanded our knowledge of the microbial world. Furthermore, the amount of sample for sequencing has significantly increased with the development of high-throughput sequencing technologies. However, fully capturing all DNA sequences carried by every microorganism in the environment is still impossible. Therefore, estimating a reasonable and practical amount for sequencing to achieve the objectives is particularly necessary. In the present study, we introduce a novel method for estimating the required minimum amount for metagenomic sequencing for a given goal. We also calculated the genomic proportion of each operational taxonomic unit and the detection efficiency of a specific gene (we have used SSU rRNA gene as an example) based on a given amount for random metagenomic sequencing. The reasonable and practical estimated amount for sequencing in metagenomic studies will provide good reference information when applying high-throughput sequencing for a given goal.


Chinese Journal of Oceanology and Limnology | 2012

Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats

Jiajia Ni; Yuhe Yu; Tanglin Zhang; Lei Gao

The intestinal bacteria of vertebrates form a close relationship with their host. External and internal conditions of the host, including its habitat, affect the intestinal bacterial community. Similarly, the intestinal bacterial community can, in turn, influence the host, particularly with respect to disease resistance. We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake. We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes, from which 66 different operational taxonomic units were identified. Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination, we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish, except for DF-7, and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities (Mantel one-tailed test, R=0.157, P=0.175). Cetobacterium appeared more frequently in the intestine of grass carp collected from pond. A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.

Collaboration


Dive into the he Yu's collaboration.

Top Co-Authors

Avatar

Qingyun Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weisong Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yunfen Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuemei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiajia Ni

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiang Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yingchun Gong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Miao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. Dai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinghao Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge