Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuheng Li.
Nature Medicine | 2013
Xiaogang Wang; Baosheng Guo; Qi Li; Jiang Peng; Zhijun Yang; Aiyuan Wang; Dong Li; Zhibo Hou; Ke Lv; Guanghan Kan; Hongqing Cao; Heng Wu; Jinping Song; Xiaohua Pan; Qiao Sun; Shukuan Ling; Yuheng Li; Mu Zhu; Pengfei Zhang; Songlin Peng; Xiaoqing Xie; Tao Tang; An Hong; Zhaoxiang Bian; Yanqiang Bai; Aiping Lu; Yinghui Li; Fuchu He; Ge Zhang; Yingxian Li
Emerging evidence indicates that microRNAs (miRNAs) have important roles in regulating osteogenic differentiation and bone formation. Thus far, no study has established the pathophysiological role for miRNAs identified in human osteoporotic bone specimens. Here we found that elevated miR-214 levels correlated with a lower degree of bone formation in bone specimens from aged patients with fractures. We also found that osteoblast-specific manipulation of miR-214 levels by miR-214 antagomir treatment in miR-214 transgenic, ovariectomized, or hindlimb-unloaded mice revealed an inhibitory role of miR-214 in regulating bone formation. Further, in vitro osteoblast activity and matrix mineralization were promoted by antagomir-214 and decreased by agomir-214, and miR-214 directly targeted ATF4 to inhibit osteoblast activity. These data suggest that miR-214 has a crucial role in suppressing bone formation and that miR-214 inhibition in osteoblasts may be a potential anabolic strategy for ameliorating osteoporosis.
RNA Biology | 2015
Chenyang Zhao; Weijia Sun; Pengfei Zhang; Shukuan Ling; Yuheng Li; Dingsheng Zhao; Jiang Peng; Aiyuan Wang; Qi Li; Jinping Song; Cheng Wang; Xiaolong Xu; Zi Xu; Guohui Zhong; Bingxing Han; Yan-Zhong Chang; Yingxian Li
microRNA is necessary for osteoclast differentiation, function and survival. It has been reported that miR-199/214 cluster plays important roles in vertebrate skeletal development and miR-214 inhibits osteoblast function by targeting ATF4. Here, we show that miR-214 is up-regulated during osteoclastogenesis from bone marrow monocytes (BMMs) with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induction, which indicates that miR-214 plays a critical role in osteoclast differentiation. Overexpression of miR-214 in BMMs promotes osteoclastogenesis, whereas inhibition of miR-214 attenuates it. We further find that miR-214 functions through PI3K/Akt pathway by targeting phosphatase and tensin homolog (Pten). In vivo, osteoclast specific miR-214 transgenic mice (OC-TG214) exhibit down-regulated Pten levels, increased osteoclast activity, and reduced bone mineral density. These results reveal a crucial role of miR-214 in the differentiation of osteoclasts, which will provide a potential therapeutic target for osteoporosis.
Cell discovery | 2016
Weijia Sun; Chenyang Zhao; Yuheng Li; Liang Wang; Guangjun Nie; Jiang Peng; Aiyuan Wang; Pengfei Zhang; Weiming Tian; Qi Li; Jinping Song; Cheng Wang; Xiaolong Xu; Yanhua Tian; Dingsheng Zhao; Zi Xu; Guohui Zhong; Bingxing Han; Shukuan Ling; Yan-Zhong Chang; Yingxian Li
MicroRNAs have an important role in bone homeostasis. However, the detailed mechanism of microRNA-mediated intercellular communication between bone cells remains elusive. Here, we report that osteoclasts secrete microRNA-enriched exosomes, by which miR-214 is transferred into osteoblasts to inhibit their function. In a coculture system, inhibition of exosome formation and secretion prevented miR-214 transportation. Exosomes specifically recognized osteoblasts through the interaction between ephrinA2 and EphA2. In osteoclast-specific miR-214 transgenic mice, exosomes were secreted into the serum, and miR-214 and ephrinA2 levels were elevated. Therefore, these exosomes have an inhibitory role in osteoblast activity. miR-214 and ephrinA2 levels in serum exosomes from osteoporotic patients and mice were upregulated substantially. These exosomes may significantly inhibit osteoblast activity. Inhibition of exosome secretion via Rab27a small interfering RNA prevented ovariectomized-induced osteoblast dysfunction in vivo. Taken together, these findings suggest that exosome-mediated transfer of microRNA plays an important role in the regulation of osteoblast activity. Circulating miR-214 in exosomes not only represents a biomarker for bone loss but could selectively regulate osteoblast function.
Circulation | 2012
Shukuan Ling; Qiao Sun; Yuheng Li; Luo Zhang; Pengfei Zhang; Xiaogang Wang; Chunyan Tian; Qi Li; Jinping Song; Hongju Liu; Guanghan Kan; Hongqing Cao; Zengming Huang; Jielin Nie; Yanqiang Bai; Shanguang Chen; Yinghui Li; Fuchu He; Lingqiang Zhang; Yingxian Li
Background— Sustained cardiac pressure overload–induced hypertrophy and pathological remodeling frequently leads to heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) has been identified to be an important regulator of cell proliferation, differentiation, and apoptosis. However, the physiological role of CKIP-1 in the heart is unknown. Methods and Results— The results of echocardiography and histology demonstrate that CKIP-1–deficient mice exhibit spontaneous cardiac hypertrophy with aging and hypersensitivity to pressure overload–induced pathological cardiac hypertrophy, as well. Transgenic mice with cardiac-specific overexpression of CKIP-1 showed resistance to cardiac hypertrophy in response to pressure overload. The results of GST pull-down and coimmunoprecipitation assays showed the interaction between CKIP-1 and histone deacetylase 4 (HDAC4), through which they synergistically inhibited transcriptional activity of myocyte-specific enhancer factor 2C. By directly interacting with the catalytic subunit of phosphatase 2A, CKIP-1 overexpression enhanced the binding of catalytic subunit of phosphatase-2A to HDAC4 and promoted HDAC4 dephosphorylation. Conclusions— CKIP-1 was found to be an inhibitor of cardiac hypertrophy by upregulating the dephosphorylation of HDAC4 through the recruitment of protein phosphatase 2A. These results demonstrated a unique function of CKIP-1, by which it suppresses cardiac hypertrophy through its capacity to regulate HDAC4 dephosphorylation and fetal cardiac genes expression.
Scientific Reports | 2015
Wei Liu; Shukuan Ling; Weijia Sun; Tong Liu; Yuheng Li; Guohui Zhong; Dingsheng Zhao; Pengfei Zhang; Jinping Song; Xiaoyan Jin; Zi Xu; Hailin Song; Qi Li; Shujuan Liu; Meng Chai; Qinyi Dai; Yi He; Zhanming Fan; Yu Jie Zhou; Yingxian Li
The purpose of this study was to find the circulating microRNAs (miRNAs) co-related with the severity of coronary artery calcification (CAC), and testify whether the selected miRNAs could reflect the obstructive coronary artery disease in symptomatic patients. Patients with chest pain and moderated risk for coronary artery disease (CAD) were characterized with coronary artery calcium score (CACS) from cardiac computed tomography (CT). We analyzed plasma miRNA levels of clinical matched 11 CAC (CACS > 100) and 6 non-CAC (CACS = 0) subjects by microarray profile. Microarray analysis identified 34 differentially expressed miRNAs between CAC and non CAC groups. Eight miRNAs (miR-223, miR-3135b, miR-133a-3p, miR-2861, miR-134, miR-191-3p, miR-3679-5p, miR-1229 in CAC patients) were significantly increased in CAC plasma in an independent clinical matched cohort. Four miRNAs (miR-2861, 134, 1229 and 3135b) were correlated with the degree of CAC. Validation test in angiographic cohort showed that miR-134, miR-3135b and miR-2861 were significantly changed in patients with obstructive CAD . We identified three significantly upregulated circulating miRNAs (miR-134, miR-3135b and 2861) correlated with CAC while detected obstructive coronary disease in symptomatic patients.
Bone | 2017
Zi Xu; Weijia Sun; Yuheng Li; Shukuan Ling; Chenyang Zhao; Guohui Zhong; Dingsheng Zhao; Jinping Song; Hailin Song; Jinqiao Li; Linhao You; Guangjun Nie; Yan-Zhong Chang; Yingxian Li
Iron overload inhibits osteoblast function and promotes osteoclastogenesis. Hepcidin plays an important role in this process. The changes in iron content and the regulation of hepcidin under unloading-induced bone loss remain unknown. A hindlimb suspension model was adopted to simulate unloading-induced bone loss in mice. The results showed that iron deposition in both liver and bone was markedly increased in hindlimb unloaded mice, and was accompanied by the upregulation of osteoclast activity and downregulation of osteoblast activity. The iron chelator deferoxamine mesylate (DFO) reduced the iron content in bone and alleviated unloading-induced bone loss. The increased iron content in bone was mainly a result of the upregulation of transferrin receptor 1 (TfR1) and divalent metal transporter 1 with iron response element (DMT1+IRE), rather than changes in the iron transporter ferroportin 1 (FPN1). The hepcidin level in the liver was significantly higher, while the FPN1 level in the duodenum was substantially reduced. However, there were no changes in the FPN1 level in bone tissue. During hindlimb unloading, downregulation of hepcidin by siRNA increased iron uptake in bone and liver, which aggravated unloading-induced bone loss. In summary, these data show that unloading-induced bone loss was orchestrated by iron overload and coupled with the regulation of hepcidin by the liver.
Scientific Reports | 2015
Yuheng Li; Guohui Zhong; Weijia Sun; Chengyang Zhao; Pengfei Zhang; Jinping Song; Dingsheng Zhao; Xiaoyan Jin; Qi Li; Shukuan Ling; Yingxian Li
The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.
Frontiers in Pharmacology | 2017
Dong Li; Jun-lian Liu; Lihong Diao; Shukuan Ling; Yuheng Li; Jianyi Gao; Quan-chun Fan; Weijia Sun; Qi Li; Dingsheng Zhao; Guohui Zhong; Dengchao Cao; Min Liu; Jiaping Wang; Shuang Zhao; Yu Liu; Guie Bai; Hong-zhi Shi; Zi Xu; Jing Wang; Chunmei Xue; Xiaoyan Jin; Xinxin Yuan; Hongxing Li; Caizhi Liu; Huiyuan Sun; Jianwei Li; Yongzhi Li; Yingxian Li
Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE), which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS), alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.
Frontiers in Physiology | 2017
Shukuan Ling; Guohui Zhong; Weijia Sun; Fengji Liang; Feng Wu; Hongxing Li; Yuheng Li; Dingsheng Zhao; Jinping Song; Xiaoyan Jin; Hailin Song; Qi Li; Yinghui Li; Shanguang Chen; Jianghui Xiong; Yingxian Li
The purpose of this study was to find the circulating microRNAs (miRNAs) co-related with bone loss induced by bed rest, and testify whether the selected miRNAs could reflect the bone mineral status of human after bed-rest. We analyzed plasma miRNA levels of 16 subjects after 45 days of −6° head-down tilt bed rest, which is a reliable model for the simulation of microgravity. We characterize the circulating miRNA profile in individuals after bed rest and identify circulating miRNAs which can best reflect the level of bone loss induced by bed rest. Expression profiling of circulating miRNA revealed significant downregulation of 37 miRNAs and upregulation of 2 miRNAs, while only 11 of the downregulated miRNAs were further validated in a larger volunteer cohort using qPCR. We found that 10 of these 11 miRNAs (miR-103, 130a, 1234, 1290, 151-5p, 151-3p, 199a-3p, 20a, 363, and 451a) had ROC curve that distinguished the status after bed rest. Importantly, significant positive correlations were identified between bone loss parameters and several miRNAs, eventually miR-1234 showed clinical significance in detecting the bone loss of individuals after 45 days of bed rest.
Molecular Medicine Reports | 2017
Mu Zhu; Zhongyang Liu; Mingze Gao; Yan Zhang; Yuheng Li; Shukuan Ling; Pengfei Zhang; Chenyang Zhao; Lijun Jiang; Yu Liu; Qi Li; Dong Li; Sumin Hu; Yingxian Li
Microgravity has been previously demonstrated to induce skeletal muscle atrophy, loss of muscle force and disorders in myogenesis and metabolism. Current pharmacological strategies exhibit poor efficacy. Bu Zhong Yi Qi decoction (BZ) is a well-known traditional Chinese medicine decoction used for myasthenia gravis. In the present study, its effect on unloading induced muscle atrophy was investigated. The mousetail suspension model was used to simulate weightlessness induced muscle atrophy. The results indicated that BZ could significantly protect muscles from simulated weightlessness-induced atrophy. To elucidate the underlying mechanisms, drugCIPHER-CS methods were introduced to predict its potential targets, significantly enriched pathways and biological processes. The results demonstrated that the calcium signaling pathway, citrate cycle, biosynthetic and lipid metabolic process are affected by BZ. Among the targets, nuclear receptor corepressor 1 (NCoR1) is one of the most important proteins involved in myogenesis and metabolism. The results indicated that BZ significantly downregulated NCoR 1 expression, and further induced muscle differentiation and metabolism by regulating NCoR1-associated gene expression in vivo and in vitro. In summary, the present study indicated that may be effective in combating weightlessness-induced muscle atrophy. Combined with bioinformatics, the underlying mechanism for this decoction was investigated, which provided an improved understanding of this decoction.