Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuho Maki is active.

Publication


Featured researches published by Yuho Maki.


Cancer Research | 2013

Acquired Resistance to EGFR Inhibitors Is Associated with a Manifestation of Stem Cell–like Properties in Cancer Cells

Kazuhiko Shien; Shinichi Toyooka; Hiromasa Yamamoto; Junichi Soh; Masaru Jida; Kelsie L. Thu; Shinsuke Hashida; Yuho Maki; Eiki Ichihara; Hiroaki Asano; Kazunori Tsukuda; Nagio Takigawa; Katsuyuki Kiura; Adi F. Gazdar; Wan L. Lam; Shinichiro Miyosh

Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI) is a critical problem in the treatment of lung cancer. Although several mechanisms have been shown to be responsible for acquired resistance, all mechanisms have not been uncovered. In this study, we investigated the molecular and cellular profiles of the acquired resistant cells to EGFR-TKI in EGFR-mutant lung cancers. Four EGFR-mutant cell lines were exposed to gefitinib by stepwise escalation and high-concentration exposure methods, and resistant sublines to gefitinib were established. The molecular profiles and cellular phenotypes of these resistant sublines were characterized. Although previously reported, alterations including secondary EGFR T790M mutation, MET amplification, and appearance of epithelial-to-mesenchymal transition (EMT) features were observed, these 2 drug-exposure methods revealed different resistance mechanisms. The resistant cells with EMT features exhibited downregulation of miRNA-200c by DNA methylation. Furthermore, the HCC827-derived subline characterized by the high-concentration exposure method exhibited not only EMT features but also stem cell-like properties, including aldehyde dehydrogenase isoform 1 (ALDH1A1) overexpression, increase of side-population, and self-renewal capability. Resistant sublines with stem cell-like properties were resistant to conventional chemotherapeutic agents but equally sensitive to histone deacetylase and proteasome inhibitors, compared with their parental cells. ALDH1A1 was upregulated in clinical samples with acquired resistance to gefitinib. In conclusion, our study indicates that the manner of EGFR-TKI exposure influences the mechanism of acquired resistance and the appearance of stem cell-like property with EGFR-TKI treatment.


Lung Cancer | 2012

Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy

Kazuhiko Shien; Shinichi Toyooka; Kouichi Ichimura; Junichi Soh; Masashi Furukawa; Yuho Maki; Takayuki Muraoka; Norimitsu Tanaka; Tsuyoshi Ueno; Hiroaki Asano; Kazunori Tsukuda; Masaomi Yamane; Takahiro Oto; Katsuyuki Kiura; Shinichiro Miyoshi

The expression of several cancer stem cell (CSC)-related markers has been confirmed in non-small cell lung cancer (NSCLC). The aim of this study was to clarify the clinical role of CSC-related markers in patients with NSCLC undergoing induction chemoradiotherapy (CRT). Fifty patients with clinically diagnosed N2 or N3 NSCLC who underwent induction CRT with docetaxel and cisplatin concurrently with thoracic radiation followed by surgery were examined in this study. The expressions of CSC related markers (CD133, ALDH1, ABCG2, and Bmi-1) were examined using immunohistochemical staining in surgically resected specimens. Among the 50 patients, 20 patients had no residual tumor cells in the resected specimen when examined pathologically; CSC-related marker expressions and their correlation to survival were evaluated in the other 30 patients. After a median follow-up period of 72 months, the 5-year overall survival rate of the patients with CD133-positive or ALDH1-positive specimens was significantly worse than that of the patients with both CD133-negative and ALDH1-negative expressions (44.9% vs. 90.0%, respectively; P = 0.042). In a multivariate analysis, CD133 and ALDH1 negativity (P = 0.047) and cN2-3 single station metastasis (P = 0.03) were significant independent prognostic factors for prolonged survival. The expressions of CSC-related markers after CRT were significantly correlated with a poor prognosis in patients with NSCLC. The development of therapeutic strategies including adjuvant therapy that take CSC-related marker positivity into consideration is likely to be a key factor in further improvements of the prognosis of patients undergoing trimodality therapy.


Lung Cancer | 2012

Strong anti-tumor effect of NVP-AUY922, a novel Hsp90 inhibitor, on non-small cell lung cancer

Tsuyoshi Ueno; Kazunori Tsukuda; Shinichi Toyooka; Midori Ando; Munenori Takaoka; Junichi Soh; Hiroaki Asano; Yuho Maki; Takayuki Muraoka; Norimitsu Tanaka; Kazuhiko Shien; Masashi Furukawa; Tomoki Yamatsuji; Katsuyuki Kiura; Yoshio Naomoto; Shinichiro Miyoshi

The anti-tumor activity of a newly developed Hsp90 inhibitor, NVP-AUY922 (AUY922), against non-small cell lung cancer (NSCLC) was examined. Twenty-one NSCLC cell lines were used, the somatic alterations of which were characterized. Cell proliferation was analyzed using a modified MTS assay. Expression of the client proteins was assessed using Western blotting. The cell cycle was analyzed using flow cytometry. The IC50 value of AUY922 for the NSCLC cell lines ranged from 5.2 to 860 nM (median, 20.4 nM). Based on previous data, cells with an IC50 of less than 50 nM were classified as sensitive cells and 19 of the 21 NSCLC cell lines were judged to be sensitive. The IC50 of five malignant pleural mesothelioma (MPM) cell lines revealed that the MPM cells had a significantly higher IC50 value (median, 89.2 nM; range, 22.2-24,100 nM) than the NSCLC cells (p=0.015). There was significant depletion of both the total and phosphorylated client proteins--EGFR, MET, HER2 and AKT--at low drug concentrations (50-100 nM) in drug-sensitive cell lines. Cell-cycle analysis was performed for two sensitive cell lines, H1975 and H838. Following AUY922 treatment, an increase in the sub-G0-G1 cell population, as well as appearance of cleaved PARP expression, indicated the induction of apoptosis. In conclusion, AUY922 was effective against most NSCLC cell lines, independent of the type of known molecular alteration, and appears to be a promising new drug for the treatment of NSCLC.


Cancer Science | 2016

Antitumor effect of afatinib, as a human epidermal growth factor receptor 2‐targeted therapy, in lung cancers harboring HER2 oncogene alterations

Ken Suzawa; Shinichi Toyooka; Masakiyo Sakaguchi; Mizuki Morita; Hiromasa Yamamoto; Shuta Tomida; Tomoaki Ohtsuka; Mototsugu Watanabe; Shinsuke Hashida; Yuho Maki; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichiro Miyoshi

Human epidermal growth factor receptor 2 (HER2) is a member of the HER family of proteins containing four receptor tyrosine kinases. It plays an important role in the pathogenesis of certain human cancers. In non‐small‐cell lung cancer (NSCLC), HER2 amplification or mutations have been reported. However, little is known about the benefit of HER2‐targeted therapy for NSCLCs harboring HER2 alterations. In this study, we investigated the antitumor effect of afatinib, an irreversible epidermal growth factor receptor (EGFR)–HER2 dual inhibitor, in lung cancers harboring HER2 oncogene alterations, including novel HER2 mutations in the transmembrane domain, which we recently identified. Normal bronchial epithelial cells, BEAS‐2B, ectopically overexpressing wild‐type HER2 or mutants (A775insYVMA, G776VC, G776LC, P780insGSP, V659E, and G660D) showed constitutive autophosphorylation of HER2 and activation of downstream signaling. They were sensitive to afatinib, but insensitive to gefitinib. Furthermore, we examined the antitumor activity of afatinib and gefitinib in several NSCLC cell lines, and investigated the association between their genetic alterations and sensitivity to afatinib treatment. In HER2‐altered NSCLC cells (H2170, Calu‐3, and H1781), afatinib downregulated the phosphorylation of HER2 and EGFR as well as their downstream signaling, and induced an antiproliferative effect through G1 arrest and apoptotic cell death. In contrast, HER2‐ or EGFR‐non‐dependent NSCLC cells were insensitive to afatinib. In addition, these effects were confirmed in vivo by using a xenograft mouse model of HER2‐altered lung cancer cells. Our results suggest that afatinib is a therapeutic option as a HER2‐targeted therapy for NSCLC harboring HER2 amplification or mutations.


Cancer Science | 2015

Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib

Shinsuke Hashida; Hiromasa Yamamoto; Kazuhiko Shien; Yuichiro Miyoshi; Tomoaki Ohtsuka; Ken Suzawa; Mototsugu Watanabe; Yuho Maki; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichiro Miyoshi; Shinichi Toyooka

Afatinib is an irreversible epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR‐TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non‐small cell lung cancer. In this study, we established various afatinib‐resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib‐resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827‐ACR, was established from one of the MET amplified‐cell lines. Several afatinib‐resistant cell lines including HCC827‐ACR displayed epithelial‐to‐mesenchymal transition (EMT) features and epigenetic silencing of miR‐200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib‐resistant cells and found that MET amplification, EMT, and stem cell‐like features are observed in cells with acquired resistance to EGFR‐TKIs. This finding may provide clues to overcoming resistance to EGFR‐TKIs.


Lung Cancer | 2013

The degree of microRNA-34b/c methylation in serum-circulating DNA is associated with malignant pleural mesothelioma

Takayuki Muraoka; Junichi Soh; Shinichi Toyooka; Keisuke Aoe; Nobukazu Fujimoto; Shinsuke Hashida; Yuho Maki; Norimitsu Tanaka; Kazuhiko Shien; Masashi Furukawa; Hiromasa Yamamoto; Hiroaki Asano; Kazunori Tsukuda; Takumi Kishimoto; Takemi Otsuki; Shinichiro Miyoshi

OBJECTIVES Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. microRNA-34b/c (miR-34b/c), which plays an important role in the pathogenesis of MPM, is frequently downregulated by DNA methylation in approximately 90% of MPM cases. In this study, we estimated the degree of miR-34b/c methylation in serum-circulating DNA using a digital methylation specific PCR assay (MSP). MATERIALS AND METHODS A real-time MSP assay was performed using the SYBR Green method. The melting temperature (Tm) of each PCR product was examined using a melting curve analysis. For a digital MSP assay, 40 wells were analyzed per sample. A total of 110 serum samples from 48 MPM cases, 21 benign asbestos pleurisy (BAP) cases, and 41 healthy volunteers (HVs) were examined. RESULTS Positive range of Tm value for miR-34b/c methylation was defined as 77.71-78.79 °C which was the mean ± 3 standard deviations of 40 wells of a positive control. The number of miR-34b/c methylated wells was counted per sample according to this criterion. The number of miR-34b/c methylated wells in MPM cases was significantly higher than that in BAP cases (P=0.03) or HVs (P<0.001). Advanced MPM cases tended to have higher number of miR-34b/c methylated wells than early MPM cases. Receiver-operating characteristic (ROC) curve analysis revealed that three number of miR-34b/c methylated wells per sample was the best cut-off of positivity of MPM with a 67% of sensitivity and a 77% specificity for prediction. The area under the ROC curve was 0.77. CONCLUSIONS Our digital MSP assay can quantify miR-34b/c methylation in serum-circulating DNA. The degree of miR-34b/c methylation in serum-circulating DNA is associated with MPM, suggesting that this approach might be useful for the establishment of a new detection system for MPM.


Journal of Cancer Research and Clinical Oncology | 2012

DNA methylation status of REIC/Dkk-3 gene in human malignancies.

Tatsuro Hayashi; Hiroaki Asano; Shinichi Toyooka; Kazunori Tsukuda; Junichi Soh; Tadahiko Shien; Naruto Taira; Yuho Maki; Norimitsu Tanaka; Hiroyoshi Doihara; Yasutomo Nasu; Nam Ho Huh; Shinichiro Miyoshi

PurposeThe REIC (reduced expression in immortalized cells)/Dkk-3 is down-regulated in various cancers and considered to be a tumor suppressor gene. REIC/Dkk-3 mRNA has two isoforms (type-a,b). REIC type-a mRNA has shown to be a major transcript in various cancer cells, and its promoter activity was much stronger than that of type-b. In this study, we examined the methylation status of REIC/Dkk-3 type-a in a broad range of human malignancies.MethodsWe examined REIC/Dkk-3 type-a methylation in breast cancers, non-small-cell lung cancers, gastric cancers, colorectal cancers, and malignant pleural mesotheliomas using a quantitative combined bisulfite restriction analysis assay and bisulfate sequencing. REIC/Dkk-3 type-a and type-b expression was examined using reverse transcriptional PCR. The relationships between the methylation and clinicopathological factors were analyzed.ResultsThe rate of REIC/Dkk-3 type-a methylation ranged from 26.2 to 50.0% in the various primary tumors that were examined. REIC/Dkk-3 type-a methylation in breast cancer cells was significantly heavier than that in the other cell lines that we tested. REIC/Dkk-3 type-a methylation was inversely correlated with REIC/Dkk-3 type-a expression. There was a correlation between REIC/Dkk-3 type-a and type-b mRNA expression. REIC/Dkk-3 type-a expression was restored in MDA-MB-231 cells using 5-aza-2′-deoxycytidine treatment. We found that estrogen receptor–positive breast cancers were significantly more common among the methylated group than among the non-methylated group.ConclusionsREIC/Dkk-3 type-a methylation was frequently detected in a broad range of cancers and appeared to play a key role in silencing REIC/Dkk-3 type-a expression in these malignancies.


Oncology Reports | 2015

Hsp90 inhibitor NVP-AUY922 enhances the radiation sensitivity of lung cancer cell lines with Acquired resistance to EGFR-tyrosine kinase inhibitors

Shinsuke Hashida; Hiromasa Yamamoto; Kazuhiko Shien; Tomoaki Ohtsuka; Ken Suzawa; Yuho Maki; Masashi Furukawa; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichiro Miyoshi; Susumu Kanazawa; Shinichi Toyooka

Acquired resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is a critical issue that needs to be overcome in the treatment of patients with non-small cell lung cancer (NSCLC) harboring EGFR activating mutations. EGFR and AKT are client proteins of the 90-kDa heat shock protein (Hsp90). Therefore, it was hypothesized that the use of Hsp90 inhibitors might allow the resistance to EGFR-TKIs to be overcome. Furthermore, Hsp90 inhibitors are known to function as radiosensitizers in various types of cancer. In the present study, we evaluated the radiosensitizing effect of the novel Hsp90 inhibitor, NVP-AUY922 (AUY), on NSCLC cell lines harboring EGFR activating mutations and showing acquired resistance to EGFR-TKIs via any of several mechanisms. We used HCC827 and PC-9, which are NSCLC cell lines harboring EGFR exon 19 deletions, and gefitinib-resistant sublines derived from the same cell lines with T790M mutation, MET amplification or stem-cell like properties. AUY was more effective against the gefitinib-resistant sublines with T790M mutation and MET amplification than against the parental cell lines, although the subline with stem cell-like properties showed more than a 10-fold higher resistance to AUY than the parental cell line. AUY exerted a significant radiosensitizing effect on the parental cell line and the MET-amplified subline through inducing G2/M arrest and inhibition of non-homologous end joining (NHEJ). In contrast, the radiosensitizing effect of AUY was limited on the subline with stem cell-like properties, in which it did not induce G2/M arrest or inhibition of NHEJ. In conclusion, combined inhibition of Hsp90 plus radiation was effective, and therefore a promising treatment alternative for overcoming major EGFR-TKI resistance, such as that induced by T790M mutation or MET amplification. However, other approaches are required to overcome minor resistance to EGFR-TKIs, such as that observed in cells with stem cell-like properties.


Clinical Lung Cancer | 2012

Knockdown of the epidermal growth factor receptor gene to investigate its therapeutic potential for the treatment of non-small-cell lung cancers.

Kazuhiko Shien; Tsuyoshi Ueno; Kazunori Tsukuda; Junichi Soh; Kenichi Suda; Takafumi Kubo; Masashi Furukawa; Takayuki Muraoka; Yuho Maki; Norimitsu Tanaka; Hiromasa Yamamoto; Katsuyuki Kiura; Tetsuya Mitsudomi; Shinichi Toyooka; Shinichiro Miyoshi

BACKGROUND Epidermal growth factor receptor (EGFR) is often overexpressed in non-small-cell lung cancer (NSCLC). Anti-EGFR agents, including EGFR-tyrosine kinase inhibitors are considered to be effective when a drug-sensitive EGFR mutation is present. However, inherent and acquired resistances are major problems of EGFR-targeting therapies. In this study, we performed EGFR knockdown by using small interfering RNAs in NSCLC cell lines to examine the significance of targeting EGFR for NSCLC therapy. METHODS We treated 13 NSCLC cell lines, including 8 EGFR mutant and 5 EGFR wild type by using gefitinib or small interfering RNAs against EGFR (siEGFR). Three cell lines (PC-9-GR1, RPC-9, and HCC827-ER) were experimentally established with acquired resistance to EGFR-tyrosine kinase inhibitors. The antitumor effect was determined by using an 3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt (MTS) or colony formation assay. The protein expression was evaluated by using Western blotting. RESULTS All 13 cell lines expressed EGFR protein, and siEGFR downregulated EGFR protein expression in all. The cell viability was suppressed by siEGFR in 6 of 8 EGFR-mutant cell lines (suppressed 57%-92% of control cells), including PC-9-GR1 and RPC-9. The NCI-H1650 and HCC827-ER harbored EGFR mutations but were not suppressed. Of note, PTEN (phosphatase and tensin homolog) was deleted in NCI-H1650, and c-MET was amplified in HCC827-ER. It was not suppressed in any of the EGFR wild-type cells except in the NCI-H411, in which EGFR is phosphorylated, which indicates its activation. CONCLUSIONS Analysis of the results indicated that EGFR can be a therapeutic target in NSCLCs with EGFR activation. In contrast, targeting EGFR is not appropriate for tumors in which EGFR is not activated, even if EGFR is expressed.


Experimental and Therapeutic Medicine | 2017

Estimation of age-related DNA degradation from formalin-fixed and paraffin-embedded tissue according to the extraction methods

Mototsugu Watanabe; Shinsuke Hashida; Hiromasa Yamamoto; Takehiro Matsubara; Tomoaki Ohtsuka; Ken Suzawa; Yuho Maki; Junichi Soh; Hiroaki Asano; Kazunori Tsukuda; Shinichi Toyooka; Shinichiro Miyoshi

Techniques for the extraction and use of nucleic acids from formalin-fixed and paraffin-embedded (FFPE) tissues, preserved over long time periods in libraries, have been developed. However, DNA extracted from FFPE tissues is generally damaged, and long-term storage may affect DNA quality. Therefore, it is important to elucidate the effect of long-term storage on FFPE tissues and evaluate the techniques used to extract DNA from them. In the present study, the yield, purity, and integrity of DNA in FFPE tissue samples was evaluated. Two DNA extraction techniques were used: A silica-binding DNA collection method using QIAamp DNA FFPE Tissue kit (QIA) and a total tissue DNA collection method using a WaxFree DNA extraction kit (WAX). A total of 25 FFPE tissues from lung adenocarcinomas were studied, which had been surgically resected and fixed at Okayama University Hospital prior to examination and subsequent storage at room temperature for 0.5, 3, 6, 9 and 12 years. Extracted DNA was quantified using ultraviolet absorbance, fluorescent dye, and quantitative polymerase chain reaction (qPCR). The quality of the DNA was defined by the absorbance ratio of 260 to 280 nm (A260/280) and Q-score, which is the quantitative value of qPCR product size ratio. The results demonstrated that the yield of total DNA extracted using WAX was significantly greater than when QIA was used (P<0.01); however, DNA extracted using WAX included more contaminants and was significantly more fragmented compared with DNA extracted using QIA (P<0.01). Aging had no significant effect on absolute DNA yield or DNA purity, although it did significantly contribute to increased DNA degradation for both QIA and WAX extraction (QIA P=0.02, WAX P=0.03; 0.5 years vs. 3 years, QIA P<0.01, WAX P=0.03; 9 years vs. 12 years). Both extraction methods are viable depending on whether high yield or high quality of extracted DNA is required. However, due to the increased degradation with age, storage time limits the available DNA in FFPE tissues regardless of the extraction method.

Collaboration


Dive into the Yuho Maki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge