Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuhong Guo is active.

Publication


Featured researches published by Yuhong Guo.


international joint conference on artificial intelligence | 2011

Multi-label classification using conditional dependency networks

Yuhong Guo; Suicheng Gu

In this paper, we tackle the challenges of multilabel classification by developing a general conditional dependency network model. The proposed model is a cyclic directed graphical model, which provides an intuitive representation for the dependencies among multiple label variables, and a well integrated framework for efficient model training using binary classifiers and label predictions using Gibbs sampling inference. Our experiments show the proposed conditional model can effectively exploit the label dependency to improve multilabel classification performance.


computer vision and pattern recognition | 2013

Adaptive Active Learning for Image Classification

Xin Li; Yuhong Guo

Recently active learning has attracted a lot of attention in computer vision field, as it is time and cost consuming to prepare a good set of labeled images for vision data analysis. Most existing active learning approaches employed in computer vision adopt most uncertainty measures as instance selection criteria. Although most uncertainty query selection strategies are very effective in many circumstances, they fail to take information in the large amount of unlabeled instances into account and are prone to querying outliers. In this paper, we present a novel adaptive active learning approach that combines an information density measure and a most uncertainty measure together to select critical instances to label for image classifications. Our experiments on two essential tasks of computer vision, object recognition and scene recognition, demonstrate the efficacy of the proposed approach.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2015

Feature Space Independent Semi-Supervised Domain Adaptation via Kernel Matching

Min Xiao; Yuhong Guo

Domain adaptation methods aim to learn a good prediction model in a label-scarce target domain by leveraging labeled patterns from a related source domain where there is a large amount of labeled data. However, in many practical domain adaptation learning scenarios, the feature distribution in the source domain is different from that in the target domain. In the extreme, the two distributions could differ completely when the feature representation of the source domain is totally different from that of the target domain. To address the problems of substantial feature distribution divergence across domains and heterogeneous feature representations of different domains, we propose a novel feature space independent semi-supervised kernel matching method for domain adaptation in this work. Our approach learns a prediction function on the labeled source data while mapping the target data points to similar source data points by matching the target kernel matrix to a submatrix of the source kernel matrix based on a Hilbert Schmidt Independence Criterion. We formulate this simultaneous learning and mapping process as a non-convex integer optimization problem and present a local minimization procedure for its relaxed continuous form. We evaluate the proposed kernel matching method using both cross domain sentiment classification tasks of Amazon product reviews and cross language text classification tasks of Reuters multilingual newswire stories. Our empirical results demonstrate that the proposed kernel matching method consistently and significantly outperforms comparison methods on both cross domain classification problems with homogeneous feature spaces and cross domain classification problems with heterogeneous feature spaces.


Computational Linguistics | 2014

Learning representations for weakly supervised natural language processing tasks

Fei Huang; Arun Ahuja; Doug Downey; Yi Yang; Yuhong Guo; Alexander Yates

Finding the right representations for words is critical for building accurate NLP systems when domain-specific labeled data for the task is scarce. This article investigates novel techniques for extracting features from n-gram models, Hidden Markov Models, and other statistical language models, including a novel Partial Lattice Markov Random Field model. Experiments on part-of-speech tagging and information extraction, among other tasks, indicate that features taken from statistical language models, in combination with more traditional features, outperform traditional representations alone, and that graphical model representations outperform n-gram models, especially on sparse and polysemous words.


international conference on computer vision | 2015

Semi-Supervised Zero-Shot Classification with Label Representation Learning

Xin Li; Yuhong Guo; Dale Schuurmans

Given the challenge of gathering labeled training data, zero-shot classification, which transfers information from observed classes to recognize unseen classes, has become increasingly popular in the computer vision community. Most existing zero-shot learning methods require a user to first provide a set of semantic visual attributes for each class as side information before applying a two-step prediction procedure that introduces an intermediate attribute prediction problem. In this paper, we propose a novel zero-shot classification approach that automatically learns label embeddings from the input data in a semi-supervised large-margin learning framework. The proposed framework jointly considers multi-class classification over all classes (observed and unseen) and tackles the target prediction problem directly without introducing intermediate prediction problems. It also has the capacity to incorporate semantic label information from different sources when available. To evaluate the proposed approach, we conduct experiments on standard zero-shot data sets. The empirical results show the proposed approach outperforms existing state-of-the-art zero-shot learning methods.


conference on computational natural language learning | 2014

Distributed Word Representation Learning for Cross-Lingual Dependency Parsing

Min Xiao; Yuhong Guo

This paper proposes to learn languageindependent word representations to address cross-lingual dependency parsing, which aims to predict the dependency parsing trees for sentences in the target language by training a dependency parser with labeled sentences from a source language. We first combine all sentences from both languages to induce real-valued distributed representation of words under a deep neural network architecture, which is expected to capture semantic similarities of words not only within the same language but also across different languages. We then use the induced interlingual word representation as augmenting features to train a delexicalized dependency parser on labeled sentences in the source language and apply it to the target sentences. To investigate the effectiveness of the proposed technique, extensive experiments are conducted on cross-lingual dependency parsing tasks with nine different languages. The experimental results demonstrate the superior cross-lingual generalizability of the word representation induced by the proposed approach, comparing to alternative comparison methods.


european conference on machine learning | 2012

Semi-supervised multi-label classification a simultaneous large-margin, subspace learning approach

Yuhong Guo; Dale Schuurmans

Labeled data is often sparse in common learning scenarios, either because it is too time consuming or too expensive to obtain, while unlabeled data is almost always plentiful. This asymmetry is exacerbated in multi-label learning, where the labeling process is more complex than in the single label case. Although it is important to consider semi-supervised methods for multi-label learning, as it is in other learning scenarios, surprisingly, few proposals have been investigated for this particular problem. In this paper, we present a new semi-supervised multi-label learning method that combines large-margin multi-label classification with unsupervised subspace learning. We propose an algorithm that learns a subspace representation of the labeled and unlabeled inputs, while simultaneously training a supervised large-margin multi-label classifier on the labeled portion. Although joint training of these two interacting components might appear intractable, we exploit recent developments in induced matrix norm optimization to show that these two problems can be solved jointly, globally and efficiently. In particular, we develop an efficient training procedure based on subgradient search and a simple coordinate descent strategy. An experimental evaluation demonstrates that semi-supervised subspace learning can improve the performance of corresponding supervised multi-label learning methods.


european conference on computer vision | 2014

Multi-level Adaptive Active Learning for Scene Classification

Xin Li; Yuhong Guo

Semantic scene classification is a challenging problem in computer vision. In this paper, we present a novel multi-level active learning approach to reduce the human annotation effort for training robust scene classification models. Different from most existing active learning methods that can only query labels for selected instances at the target categorization level, i.e., the scene class level, our approach establishes a semantic framework that predicts scene labels based on a latent object-based semantic representation of images, and is capable to query labels at two different levels, the target scene class level (abstractive high level) and the latent object class level (semantic middle level). Specifically, we develop an adaptive active learning strategy to perform multi-level label query, which maintains the default label query at the target scene class level, but switches to the latent object class level whenever an “unexpected” target class label is returned by the labeler. We conduct experiments on two standard scene classification datasets to investigate the efficacy of the proposed approach. Our empirical results show the proposed adaptive multi-level active learning approach can outperform both baseline active learning methods and a state-of-the-art multi-level active learning method.


Journal of Computer Science and Technology | 2017

Effective Query Grouping Strategy in Clouds

Qin Liu; Yuhong Guo; Jie Wu; Guojun Wang

As the demand for the development of cloud computing grows, more and more organizations have outsourced their data and query services to the cloud for cost-saving and flexibility. Suppose an organization that has a great number of users querying the cloud-deployed multiple proxy servers to achieve cost efficiency and load balancing. Given n queries, each of which is expressed as several keywords, and k proxy servers, the problem to be solved is how to classify n queries into k groups, in order to minimize the difference between each group and the number of distinct keywords in all groups. Since this problem is NP-hard, it is solved in mathematic and heuristic ways. Mathematic grouping uses a local optimization method, and heuristic grouping is based on k-means. Specifically, two extensions are provided: the first one focuses on robustness, i.e., each user obtains search results even if some proxy servers fail; the second one focuses on benefit, i.e., each user can retrieve as many files as possible that may be of interest without increasing the sum. Extensive evaluations have been conducted on both a synthetic dataset and real query traces to verify the effectiveness of our strategies.


european conference on machine learning | 2015

Semi-supervised subspace co-projection for multi-class heterogeneous domain adaptation

Min Xiao; Yuhong Guo

Heterogeneous domain adaptation aims to exploit labeled training data from a source domain for learning prediction models in a target domain under the condition that the two domains have different input feature representation spaces. In this paper, we propose a novel semi-supervised subspace co-projection method to address multi-class heterogeneous domain adaptation. The proposed method projects the instances of the two domains into a co-located latent subspace to bridge the feature divergence gap across domains, while simultaneously training prediction models in the co-projected representation space with labeled training instances from both domains. It also exploits the unlabeled data to promote the consistency of co-projected subspaces from the two domains based on a maximum mean discrepancy criterion. Moreover, to increase the stability and discriminative informativeness of the subspace co-projection, we further exploit the error-correcting output code schemes to incorporate more binary prediction tasks shared across domains into the learning process. We formulate this semi-supervised learning process as a non-convex joint minimization problem and develop an alternating optimization algorithm to solve it. To investigate the empirical performance of the proposed approach, we conduct experiments on cross-lingual text classification and cross-domain digit image classification tasks with heterogeneous feature spaces. The experimental results demonstrate the efficacy of the proposed method on these heterogeneous domain adaptation problems.

Collaboration


Dive into the Yuhong Guo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge