Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuhua Lu is active.

Publication


Featured researches published by Yuhua Lu.


Cancer Letters | 2013

Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells

Yuhua Lu; Hui Zhu; Haiyan Shan; Junjie Lu; Xu Chang; Xiaohong Li; Jingjing Lu; Xiangjun Fan; Shajun Zhu; Yao Wang; Qingsong Guo; Lei Wang; Yan Huang; Mingyan Zhu; Zhiwei Wang

Pancreatic cancer is notorious for its difficult diagnosis at early stage and poor recurrence-free prognosis. This study aimed to investigate the possible involvement of Oct4 and Nanog in pancreatic cancer. The high expressions of Oct4 and Nanog in human pancreatic cancer tissues were found to indicate a worse prognostic value of patients. The pancreatic cancer stem cells (PCSCs) that isolated from PANC-1 cell line by flow cytometry exhibited high expressions of Oct4 and Nanog. To investigate whether Oct4 and Nanog play crucial role in maintaining the stemness of PCSCs, double knockdown of Oct4 and Nanog demonstrated that Oct4 and Nanog significantly reduced proliferation, migration, invasion, chemoresistance, and tumorigenesis of PCSCs in vitro and in vivo. The altered expression of the genes related to pancreatic carcinogenesis, metastasis, drug resistance and epithelial-mesenchymal transdifferentiation (EMT) might affect the biological characteristics of PCSCs. Our results suggest that Oct4 and Nanog may serve as a potential marker of prognosis and a novel target of therapy for pancreatic cancer.


Artificial Organs | 2016

Decellularization and Recellularization of Rat Livers With Hepatocytes and Endothelial Progenitor Cells.

Pengcheng Zhou; Yan Huang; Yibing Guo; Lei Wang; Changchun Ling; Qingsong Guo; Yao Wang; Shajun Zhu; Xiangjun Fan; Mingyan Zhu; Hua Huang; Yuhua Lu; Zhiwei Wang

Whole-organ decellularization has been identified as a promising choice for tissue engineering. The aim of the present study was to engineer intact whole rat liver scaffolds and repopulate them with hepatocytes and endothelial progenitor cells (EPCs) in a bioreactor. Decellularized liver scaffolds were obtained by perfusing Triton X-100 with ammonium hydroxide. The architecture and composition of the original extracellular matrix were preserved, as confirmed by morphologic, histological, and immunolabeling methods. To determine biocompatibility, the scaffold was embedded in the subcutaneous adipose layer of the back of a heterologous animal to observe the infiltration of inflammatory cells. Hepatocytes were reseeded using a parenchymal injection method and cultured by continuous perfusion. EPCs were reseeded using a portal vein infusion method. Morphologic and functional examination showed that the hepatocytes and EPCs grew well in the scaffold. The present study describes an effective method of decellularization and recellularization of rat livers, providing the foundation for liver engineering and the development of bioartificial livers.


BioMed Research International | 2015

3D Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: In Vitro and In Vivo Study

Di Wu; Jian Wan; Yan Huang; Yibing Guo; Tianxin Xu; Mingyan Zhu; Xiangjun Fan; Shajun Zhu; Changchun Ling; Xiaohong Li; Jingjing Lu; Hui Zhu; Pengcheng Zhou; Yuhua Lu; Zhiwei Wang

Type 1 diabetes is an autoimmune disease which is due to the lack of β cells. The ideal therapy to cure the disease is pancreas transplantation, but its application is confined to a limited number of people due to the shortage of organ and the need for life-long immunosuppression. Regenerative medicine methods such as a tissue engineered pancreas seem to provide a useful method. In order to construct a microenvironment similar to the native pancreas that is suitable for not only cell growth but also cellular function exertion, a decellularized mouse pancreas was used as a natural 3D scaffold in this experiment. MIN-6 β cells were planted in the bioscaffold. The cell engraftment was verified by HE staining and SEM. Immunostaining procedures were performed to confirm the normal function of the engrafted cells. qRT-PCR demonstrated that insulin gene expression of the recellularized pancreas was upregulated compared with conventional plate-cultured cells. In vivo experiment was also accomplished to further evaluate the function of the recellularized bioscaffold and the result was inspiring. And beyond doubt this will bring new hope for type 1 diabetic patients.


Diabetes Research and Clinical Practice | 2014

DIFFERENTIATION OF IPSCS INTO INSULIN-PRODUCING CELLS VIA ADENOVIRAL TRANSFECTION OF PDX-1, NEUROD1 AND MAFA

Lei Wang; Yan Huang; Qingsong Guo; Xiangjun Fan; Yuhua Lu; Shajun Zhu; Yao Wang; Xiangkun Bo; Xu Chang; Mingyan Zhu; Zhiwei Wang

AIMS The aim of this study was to evaluate the effect of PDX-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation-1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A) in the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells and to explore this new approach of cell transplantation therapy for type 1 diabetes in mice. METHODS iPSCs were infected with adenovirus (Ad-Mouse PDX-1-IRES-GFP, Ad-Mouse NeuroD1-IRES-GFP and Ad-Mouse Mafa-IRES-GFP) and then differentiated into insulin-producing cells in vitro. RT-PCR was applied to detect insulin gene expression, immunofluorescence to identify insulin protein, and mouse insulin enzyme-linked immunosorbent assay (ELISA) was used to evaluate the amount of insulin at different concentration of glucose. Insulin-producing cells were transplanted into the liver parenchyma of diabetic mice. Immunohistochemistry, intraperitoneal glucose tolerance test (IPGTT) and fasting blood glucose (FBG) were performed to assess the function of insulin-producing cells. RESULTS Insulin biosynthesis and secretion were induced in iPSCs and insulin-producing cells were responsive to glucose in a dose-dependent manner. Gene expression of the three-gene-modified embryoid bodies (EBs) was similar to the mouse pancreatic β cell line MIN6. Transplantation of insulin-producing cells into type I diabetic mice resulted in hyperglycemia reversal. CONCLUSIONS The insulin-producing cells we obtained from three-gene-modified EBs may be used as seed cells for tissue engineering and may represent a cell replacement strategy for the production of β cells for the treatment of type 1 diabetes.


Journal of Biomaterials Applications | 2015

Three-dimensional culture of mouse pancreatic islet on a liver-derived perfusion-decellularized bioscaffold for potential clinical application.

Tianxin Xu; Mingyan Zhu; Yibing Guo; Di Wu; Yan Huang; Xiangjun Fan; Shajun Zhu; Changchun Lin; Xiaohong Li; Jingjing Lu; Hui Zhu; Pengcheng Zhou; Yuhua Lu; Zhiwei Wang

The cutting-edge technology of three-dimensional liver decellularized bioscaffold has a potential to provide a microenvironment that is suitable for the resident cells and even develop a new functional organ. Liver decellularized bioscaffold preserved the native extracellular matrix and three-dimensional architecture in support of the cell culture. The goal of this study was to discover if three-dimensional extracellular matrix derived from mouse liver could facilitate the growth and maintenance of physiological functions of mouse isolated islets. We generated a whole organ liver decellularized bioscaffold which could successfully preserve extracellular matrix proteins and the native vascular channels using 1% Triton X-100/0.1% ammonium protocol. To evaluate the potential of decellularized liver as a scaffold for islets transplantation, the liver decellularized bioscaffold was infused with mouse primary pancreatic islets which were obtained through Collagenase P digestion protocol. Its yield, morphology, and quality were estimated by microscopic analysis, dithizone staining, insulin immunofluorescence and glucose stimulation experiments. Comparing the three-dimensional culture in liver decellularized bioscaffold with the orthodoxy two-dimensional plate culture, hematoxylin-eosin staining, immunohistochemistry, and insulin gene expression were tested. Our results demonstrated that the liver decellularized bioscaffold could support cellular culture and maintenance of cell functions. In contrast with the conventional two-dimensional culture, three-dimensional culture system could give rise to an up-regulated insulin gene expression. These findings demonstrated that the liver bioscaffold by a perfusion-decellularized technique could serve as a platform to support the survival and function of the pancreatic islets in vitro. Meanwhile three-dimensional culture system had a superior role in contrast with the two-dimensional culture. This study advanced the field of regenerative medicine towards the development of a liver decellularized bioscaffold capable of forming a neo-organ and could be used as potential clinical application.


BioMed Research International | 2017

Culture of iPSCs Derived Pancreatic β-Like Cells In Vitro Using Decellularized Pancreatic Scaffolds: A Preliminary Trial

Jian Wan; Yan Huang; Pengcheng Zhou; Yibing Guo; Cen Wu; Shajun Zhu; Yao Wang; Lei Wang; Yuhua Lu; Zhiwei Wang

Diabetes mellitus is a disease which has affected 415 million patients in 2015. In an effort to replace the significant demands on transplantation and morbidity associated with transplantation, the production of β-like cells differentiated from induced pluripotent stem cells (iPSCs) was evaluated. This approach is associated with promising decellularized scaffolds with natural extracellular matrix (ECM) and ideal cubic environment that will promote cell growth in vivo. Our efforts focused on combining decellularized rat pancreatic scaffolds with mouse GFP+-iPSCs-derived pancreatic β-like cells, to evaluate whether decellularized scaffolds could facilitate the growth and function of β-like cells. β-like cells were differentiated from GFP+-iPSCs and evaluated via cultivating in the dynamic circulation perfusion device. Our results demonstrated that decellularized pancreatic scaffolds display favorable biochemical properties. Furthermore, not only could the scaffolds support the survival of β-like cells, but they also accelerated the expression of the insulin as compared to plate-based cell culture. In conclusion, these results suggest that decellularized pancreatic scaffolds could provide a suitable platform for cellular activities of β-like cells including survival and insulin secretion. This study provides preliminary support for regenerating insulin-secreting organs from the decellularized scaffolds combined with iPSCs derived β-like cells as a potential clinical application.


Journal of Artificial Organs | 2018

Vascularization of pancreatic decellularized scaffold with endothelial progenitor cells

Yibing Guo; Cen Wu; Liancheng Xu; Yang Xu; Li Xiaohong; Zhu Hui; Lu Jingjing; Yuhua Lu; Zhiwei Wang

Vascularization remains a large obstacle for creating a functional pancreas-tissue equivalent for transplantation. In this study, a pre-vascularized pancreatic decellularized scaffold was prepared through endothelializing with endothelial progenitor cells (EPCs) in a bioreactor, and the ability to regenerate new blood vessels was detected in vivo. Initially, pancreases of Sprague–Dawley (SD) rats were perfused with 1% Triton X-100 and 0.1% ammonium hydroxide to remove the cellular components while the intact vascular network was preserved. Then, the decellularized scaffold was reseed with EPCs, which were primarily characterized by dual staining for dil-labeled acetylated low-density lipoprotein (Dil-acLDL) and fluorescein isothiocyanate labeled ulex europaeus agglutinin 1 (FITC-UEA-1), to reconstruct the vascular network. Thus, a scaffold covered with EPCs in the vessel structure was created. After that, the scaffold was transplanted into the rat in vivo to observe the anastomosis with the host vascular network. The results showed that EPCs can be located around the blood vessel wall, and re-endothelialized scaffold connected with the host through new blood vessel formation earlier than the control group (p < 0.05). These findings all indicated that the pancreatic decellularized scaffold endothelialized with EPCs may be further applied to solve the problem of blood supply and support the function of insulin-secreting cells after in vivo transplantation.


Cell Transplantation | 2017

Transcriptome analysis of the induced pluripotent stem cell (iPSC)-derived pancreatic β-like cell differentiation.

Yan Huang; Jian Wan; Yibing Guo; Shajun Zhu; Yao Wang; Lei Wang; Qingsong Guo; Yuhua Lu; Zhiwei Wang

Diabetes affects millions of people worldwide, and β-cell replacement is one of the promising new strategies for treatment. Induced pluripotent stem cells (iPSCs) can differentiate into any cell type, including pancreatic β cells, providing a potential treatment for diabetes. However, the molecular mechanisms underlying the differentiation of iPSC-derived β cells have not yet been fully elucidated. Here, we generated pancreatic β-like cells from mouse iPSCs using a 3-step protocol and performed deep RNA sequencing to get a transcriptional landscape of iPSC-derived pancreatic β-like cells during the selective differentiation period. We then focused on the differentially expressed genes (DEGs) during the time course of the differentiation period, and these genes underwent Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis. In addition, gene-act networks were constructed for these DEGs, and the expression of pivotal genes detected by quantitative real-time polymerase chain reaction was well correlated with RNA sequence (RNA-seq). Overall, our study provides valuable information regarding the transcriptome changes in β cells derived from iPSCs during differentiation, elucidates the biological process and pathways underlying β-cell differentiation, and promotes the identification and functional analysis of potential genes that could be used for improving functional β-cell generation from iPSCs.


Pediatric Transplantation | 2015

Controlling the blood glucose of type 1 diabetes mice by co-culturing MIN-6 β cells on 3D scaffold

Xiaoqi Yuan; Yan Huang; Yibing Guo; Lei Wang; Qingsong Guo; Tianxing Xu; Di Wu; Pengcheng Zhou; Shajun Zhu; Yao Wang; Xiangjun Fan; Mingyan Zhu; Yuhua Lu; Zhiwei Wang

T1D is an autoimmune disease, which may be caused by lack of insulin‐secreting β cells due to damage of autoimmune system. Living with T1D is a challenge for the child and the family; cell transplantation is a treatment option for diabetes in children. To establish a microenvironment suitable for cell growth and proliferation as well as for sustained cellular function, we used MIN‐6 β cells as seed cells and SF‐IV collagen as a 3D composite scaffold to construct artificial pancreas in this experiment. The cell viabilities were determined by MTT assay, and the response of cells to different glucose concentrations was observed by glucose stimulation test. Artificial pancreas was transplanted into the abdominal cavity of T1D mice, and the changes of blood glucose were monitored. After 10 days, insulin expression was detected by immunohistochemical method, and the claybank stained area showed effectiveness of insulin secretion. A series of experiments showed that implantation of 3D cell scaffold into the abdominal cavity can effectively control the blood glucose level of T1D mice. It also had longer‐lasting hypoglycemic effects than simple cell transplantation, which was expected to become a new method for the treatment of T1D.


Journal of Biomaterials Applications | 2018

Constructing heparin-modified pancreatic decellularized scaffold to improve its re-endothelialization:

Liancheng Xu; Yibing Guo; Yan Huang; Yicheng Xiong; Yang Xu; Xiaohong Li; Jingjing Lu; Lei Wang; Yao Wang; Yuhua Lu; Zhiwei Wang

Pancreas transplantation is considered as a promising therapeutic option with the potential to cure diabetes. However, efficacy of current clinical transplantation is limited by the donor organ. With regard to creating a functional pancreas-tissue equivalent for transplantation, vascularization remains a large obstacle. To enhance the angiogenic properties of pancreatic decellularized scaffold, surface modification of the vasculature was used to promote endothelialization efficiency. In this study, an endothelialized pancreatic decellularized scaffold was obtained through heparin modification under mild conditions. The immobilization of heparin was performed through 1-ethyl-3–(3-dimethylaminopropyl)-carbodiimide and N-Hydroxysuccinimide. The morphology, ultra-structure and porosity of the heparinized scaffold were characterized by toluidine blue staining, scanning electron microscope and infrared spectrum. The adhesion, proliferation and angiogenesis of human umbilical vein endothelial cells on heparin-pancreatic decellularized scaffold were also researched in vitro. In vivo transplantation was also performed to observe the location of human umbilical vein endothelial cells and the formation of new blood vessel, which exhibited significant differences with pancreatic decellularized scaffold group (p<0.05). These findings indicated that the endothelialized heparin-pancreatic decellularized scaffold may be used to solve the problem of blood supply and to support the function of insulin-secreting cells better after in vivo transplantation, and therefore, would be a potential candidate for pancreatic tissue engineering.

Collaboration


Dive into the Yuhua Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge