Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuhuan Luo is active.

Publication


Featured researches published by Yuhuan Luo.


Journal of Biological Chemistry | 2017

SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy SGLT2 PROTEIN INHIBITION DECREASES RENAL LIPID ACCUMULATION, INFLAMMATION, AND THE DEVELOPMENT OF NEPHROPATHY IN DIABETIC MICE

Xiaoxin X. Wang; Jonathan Levi; Yuhuan Luo; Komuraiah Myakala; Michal Herman-Edelstein; Liru Qiu; Dong Wang; Yingqiong Peng; Almut Grenz; Scott Lucia; Evgenia Dobrinskikh; Hermann Koepsell; Jeffrey B. Kopp; Avi Z. Rosenberg; Moshe Levi

There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice.


Journal of The American Society of Nephrology | 2016

G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes

Xiaoxin X. Wang; Michal Herman Edelstein; Uzi Gafter; Liru Qiu; Yuhuan Luo; Evgenia Dobrinskikh; Scott Lucia; Luciano Adorini; Jonathan Levi; Avi Z. Rosenberg; Jeffrey B. Kopp; David Gius; Moin A. Saleem; Moshe Levi

Obesity and diabetes mellitus are the leading causes of renal disease. In this study, we determined the regulation and role of the G protein-coupled bile acid receptor TGR5, previously shown to be regulated by high glucose and/or fatty acids, in obesity-related glomerulopathy (ORG) and diabetic nephropathy (DN). Treatment of diabetic db/db mice with the selective TGR5 agonist INT-777 decreased proteinuria, podocyte injury, mesangial expansion, fibrosis, and CD68 macrophage infiltration in the kidney. INT-777 also induced renal expression of master regulators of mitochondrial biogenesis, inhibitors of oxidative stress, and inducers of fatty acid β-oxidation, including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), and Nrf-1. Increased activity of SIRT3 was evidenced by normalization of the increased acetylation of mitochondrial superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2) observed in untreated db/db mice. Accordingly, INT-777 decreased mitochondrial H2O2 generation and increased the activity of SOD2, which associated with decreased urinary levels of H2O2 and thiobarbituric acid reactive substances. Furthermore, INT-777 decreased renal lipid accumulation. INT-777 also prevented kidney disease in mice with diet-induced obesity. In human podocytes cultured with high glucose, INT-777 induced mitochondrial biogenesis, decreased oxidative stress, and increased fatty acid β-oxidation. Compared with normal kidney biopsy specimens, kidney specimens from patients with established ORG or DN expressed significantly less TGR5 mRNA, and levels inversely correlated with disease progression. Our results indicate that TGR5 activation induces mitochondrial biogenesis and prevents renal oxidative stress and lipid accumulation, establishing a role for TGR5 in inhibiting kidney disease in obesity and diabetes.


Journal of Biological Chemistry | 2017

A dual agonist of farnesoid X receptor (FXR) and the G protein–coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice

Xiaoxin X. Wang; Yuhuan Luo; Dong Wang; Luciano Adorini; Mark Pruzanski; Evgenia Dobrinskikh; Moshe Levi

Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid–activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein–coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-β expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease.


Journal of Biological Chemistry | 2016

Sevelamer Improves Steatohepatitis, Inhibits Liver and Intestinal Farnesoid X Receptor (FXR), and Reverses Innate Immune Dysregulation in a Mouse Model of Non-Alcoholic Fatty Liver Disease

Brett McGettigan; Rachel H. McMahan; Yuhuan Luo; Xiaoxin X. Wang; David J. Orlicky; Cara Porsche; Moshe Levi; Hugo R. Rosen

Bile acid sequestrants are synthetic polymers that bind bile acids in the gut and are used to treat dyslipidemia and hyperphosphatemia. Recently, these agents have been reported to lower blood glucose and increase insulin sensitivity by altering bile acid signaling pathways. In this study, we assessed the efficacy of sevelamer in treating mice with non-alcoholic fatty liver disease (NAFLD). We also analyzed how sevelamer alters inflammation and bile acid signaling in NAFLD livers. Mice were fed a low-fat or Western diet for 12 weeks followed by a diet-plus-sevelamer regimen for 2 or 12 weeks. At the end of treatment, disease severity was assessed, hepatic leukocyte populations were examined, and expression of genes involved in farnesoid X receptor (FXR) signaling in the liver and intestine was analyzed. Sevelamer treatment significantly reduced liver steatosis and lobular inflammation. Sevelamer-treated NAFLD livers had notably fewer pro-inflammatory infiltrating macrophages and a significantly greater fraction of alternatively activated Kupffer cells compared with controls. Expression of genes involved in FXR signaling in the liver and intestine was significantly altered in mice with NAFLD as well as in those treated with sevelamer. In a mouse model of NAFLD, sevelamer improved disease and counteracted innate immune cell dysregulation in the liver. This study also revealed a dysregulation of FXR signaling in the liver and intestine of NAFLD mice that was counteracted by sevelamer treatment.


The FASEB Journal | 2017

Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice

Karen R. Jonscher; Michael S. Stewart; Alba Alfonso-Garcia; Brian C. DeFelice; Xiaoxin X. Wang; Yuhuan Luo; Moshe Levi; Margaret J.R. Heerwagen; Rachel C. Janssen; Becky A. de la Houssaye; Ellen Wiitala; Garrett Florey; Raleigh L. Jonscher; Eric O. Potma; Oliver Fiehn; Jacob E. Friedman

Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western‐style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet‐induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre‐ and postnatally in WD‐fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ‐fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD‐induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation. —Jonscher, K. R., Stewart, M. S., Alfonso‐Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long‐term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J. 31, 1434–1448 (2017) www.fasebj.org


Journal of The American Society of Nephrology | 2017

FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity

Xiaoxin X. Wang; Dong Wang; Yuhuan Luo; Komuraiah Myakala; Evgenia Dobrinskikh; Avi Z. Rosenberg; Jonathan Levi; Jeffrey B. Kopp; Amanda Field; Ashley Hill; Scott Lucia; Liru Qiu; Tao Jiang; Yingqiong Peng; David J. Orlicky; Gabriel Garcia; Michal Herman-Edelstein; Vivette D. D’Agati; Kammi J. Henriksen; Luciano Adorini; Mark Pruzanski; Cen Xie; Kristopher W. Krausz; Frank J. Gonzalez; Suman Ranjit; Alexander S. Dvornikov; Enrico Gratton; Moshe Levi

Bile acids are ligands for the nuclear hormone receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. We have shown that FXR and TGR5 have renoprotective roles in diabetes- and obesity-related kidney disease. Here, we determined whether these effects are mediated through differential or synergistic signaling pathways. We administered the FXR/TGR5 dual agonist INT-767 to DBA/2J mice with streptozotocin-induced diabetes, db/db mice with type 2 diabetes, and C57BL/6J mice with high-fat diet-induced obesity. We also examined the individual effects of the selective FXR agonist obeticholic acid (OCA) and the TGR5 agonist INT-777 in diabetic mice. The FXR agonist OCA and the TGR5 agonist INT-777 modulated distinct renal signaling pathways involved in the pathogenesis and treatment of diabetic nephropathy. Treatment of diabetic DBA/2J and db/db mice with the dual FXR/TGR5 agonist INT-767 improved proteinuria and prevented podocyte injury, mesangial expansion, and tubulointerstitial fibrosis. INT-767 exerted coordinated effects on multiple pathways, including stimulation of a signaling cascade involving AMP-activated protein kinase, sirtuin 1, PGC-1α, sirtuin 3, estrogen-related receptor-α, and Nrf-1; inhibition of endoplasmic reticulum stress; and inhibition of enhanced renal fatty acid and cholesterol metabolism. Additionally, in mice with diet-induced obesity, INT-767 prevented mitochondrial dysfunction and oxidative stress determined by fluorescence lifetime imaging of NADH and kidney fibrosis determined by second harmonic imaging microscopy. These results identify the renal signaling pathways regulated by FXR and TGR5, which may be promising targets for the treatment of nephropathy in diabetes and obesity.


Biomedical Optics Express | 2017

Measuring the effect of a Western diet on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy

Suman Ranjit; Alexander S. Dvornikov; Evgenia Dobrinskikh; Xiaoxin Wang; Yuhuan Luo; Moshe Levi; Enrico Gratton

The phasor approach to auto-fluorescence lifetime imaging was used to identify and characterize a long lifetime species (LLS) (~7.8 ns) in livers of mice fed with a Western diet. The size of the areas containing this LLS species depends on the type of diet and the size distribution shows Western diet has much larger LLS sizes. Combination of third harmonic generation images with FLIM identified the LLS species with fat droplets and the droplet size distribution was estimated. Second harmonic generation microscopy combined with phasor FLIM shows that there is an increase in fibrosis with a Western diet. A new decomposition in three components of the phasor plot shows that a Western diet is correlated with a higher fraction of free NADH, signifying more reducing condition and more glycolytic condition. Multiparametric analysis of phasor distribution shows that from the distribution of phasor points, a Western diet fed versus a low fat diet fed samples of mice livers can be separated. The phasor approach for the analysis of FLIM images of autofluorescence in liver specimens can result in discovery of new fluorescent species and then these new fluorescent species can help assess tissue architecture. Finally integrating FLIM and second and third harmonic analysis provides a measure of the advancement of fibrosis as an effect of diet.


International Journal of Molecular Sciences | 2018

The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice

Dong Wang; Yuhuan Luo; Xiaoxin Wang; David J. Orlicky; Komuraiah Myakala; Pengyuan Yang; Moshe Levi

Obesity and obesity related kidney and liver disease have become more prevalent over the past few decades, especially in the western world. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with promising effects on cardiovascular and renal function. Given SGLT2 inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of the highly selective renal SGLT2 inhibitor dapagliflozin in mice with Western diet (WD) induced obesity. Low fat (LF) diet or WD-fed male C57BL/6J mice were treated with dapagliflozin for 26 weeks. Dapagliflozin attenuated the WD-mediated increases in body weight, plasma glucose and plasma triglycerides. Treatment with dapagliflozin prevented podocyte injury, glomerular pathology and renal fibrosis determined by second harmonic generation (SHG), nephrin, synaptopodin, collagen IV, and fibronectin immunofluorescence microscopy. Oil Red O staining showed dapagliflozin also decreased renal lipid accumulation associated with decreased SREBP-1c mRNA abundance. Moreover, renal inflammation and oxidative stress were lower in the dapagliflozin-treated WD-fed mice than in the untreated WD-fed mice. In addition, dapagliflozin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), hepatic lipid accumulation as determined by H&E and Oil Red O staining, and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, and hepatic fibrosis as determined by picrosirius red (PSR) staining and TPE-SHG microscopy in WD-fed mice. Thus, our study demonstrated that the co-administration of the SGLT2 inhibitor dapagliflozin attenuates renal and liver disease during WD feeding of mice.


Scientific Reports | 2017

Serelaxin improves cardiac and renal function in DOCA-salt hypertensive rats

Dong Wang; Yuhuan Luo; Komuraiah Myakala; David J. Orlicky; Evgenia Dobrinskikh; Xiaoxin Wang; Moshe Levi

Serelaxin, a recombinant form of the naturally occurring peptide hormone relaxin-2, is a pleiotropic vasodilating hormone that has been studied in patients with acute heart failure. In this study, the effects of serelaxin on cardiac and renal function, fibrosis, inflammation and lipid accumulation were studied in DOCA-salt treated rats. Uninephrectomized rats were assigned to two groups: controls provided with normal drinking water and DOCA provided with DOCA pellets and sodium chloride drinking water. After 4 weeks, the DOCA-salt rats were randomly selected and implanted with osmotic minipumps delivering vehicle or serelaxin for another 4 weeks. Treatment with serelaxin prevented cardiac and renal dysfunction in DOCA-salt rats. Serelaxin prevented cardiac and renal fibrosis, as determined by Picrosirius Red staining and Second Harmonic Generation (SHG) Microscopy. Treatment of DOCA-salt rats with serelaxin decreased renal inflammation, including the expression of TGF-β, NFκB, MCP-1, IL-1, IL-6, ICAM-1, VCAM-1 and CD68 macrophages. Serelaxin also decreased lipid accumulation in kidney in part by decreasing SREBP-1c, SREBP-2, ChREBP, FATP1, HMGCoAR, and LDL receptor, and increasing Acox1 and ABCA1. In summary, serelaxin reversed DOCA-salt induced cardiac and renal dysfunction.


Investigative Ophthalmology & Visual Science | 2017

Long-term Intermittent Fasting (IF) Initiated at Night Prevents Development of Diabetic Retinopathy by Restoration of Bile Acid Metabolism in db/db Mice

Maria B Grant; Leni Moldovan; Eleni Beli; Yuanqing Yan; Ashay D. Bhatwadekar; Ruli Gao; James Domingquez; Todd A. Lydic; Xiaoxin Wang; Yuhuan Luo; Dong Wang; Moshe Levi; Julia V. Busik; Michael E Boulton

Collaboration


Dive into the Yuhuan Luo's collaboration.

Top Co-Authors

Avatar

Moshe Levi

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Dong Wang

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoxin Wang

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey B. Kopp

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jonathan Levi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Liru Qiu

Anschutz Medical Campus

View shared research outputs
Researchain Logo
Decentralizing Knowledge