Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuhuan Wang is active.

Publication


Featured researches published by Yuhuan Wang.


The EMBO Journal | 2010

NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development

Annarita Miccio; Yuhuan Wang; Wei Hong; Gregory D. Gregory; Hongxin Wang; Xiang Yu; John K. Choi; Suresh G. Shelat; Wei Tong; Mortimer Poncz; Gerd A. Blobel

GATA transcription factors interact with FOG proteins to regulate tissue development by activating and repressing transcription. FOG‐1 (ZFPM1), a co‐factor for the haematopoietic factor GATA‐1, binds to the NuRD co‐repressor complex through a conserved N‐terminal motif. Surprisingly, we detected NuRD components at both repressed and active GATA‐1/FOG‐1 target genes in vivo. In addition, while NuRD is required for transcriptional repression in certain contexts, we show a direct requirement of NuRD also for FOG‐1‐dependent transcriptional activation. Mice in which the FOG‐1/NuRD interaction is disrupted display defects similar to germline mutations in the Gata1 and Fog1 genes, including anaemia and macrothrombocytopaenia. Gene expression analysis in primary mutant erythroid cells and megakaryocytes (MKs) revealed an essential function for NuRD during both the repression and activation of select GATA‐1/FOG‐1 target genes. These results show that NuRD is a critical co‐factor for FOG‐1 and underscore the versatile use of NuRD by lineage‐specific transcription factors to activate and repress gene transcription in the appropriate cellular and genetic context.


Journal of Clinical Investigation | 2010

Infusion of mature megakaryocytes into mice yields functional platelets

Rudy Fuentes; Yuhuan Wang; Jessica Hirsch; Cheng Wang; Lubica Rauova; G. Scott Worthen; M. Anna Kowalska; Mortimer Poncz

Thrombopoiesis, the process by which circulating platelets arise from megakaryocytes, remains incompletely understood. Prior studies suggest that megakaryocytes shed platelets in the pulmonary vasculature. To better understand thrombopoiesis and to develop a potential platelet transfusion strategy that is not dependent upon donors, of which there remains a shortage, we examined whether megakaryocytes infused into mice shed platelets. Infused megakaryocytes led to clinically relevant increases in platelet numbers. The released platelets were normal in size, displayed appropriate surface markers, and had a near-normal circulating half-life. The functionality of the donor-derived platelets was also demonstrated in vivo. The infused megakaryocytes mostly localized to the pulmonary vasculature, where they appeared to shed platelets. These data suggest that it may be unnecessary to generate platelets from ex vivo grown megakaryocytes to achieve clinically relevant increases in platelet numbers.


Blood | 2012

Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf

Yukako Ono; Yuhuan Wang; Hidenori Suzuki; Shinichiro Okamoto; Yasuo Ikeda; Mitsuru Murata; Mortimer Poncz; Yumiko Matsubara

Determinant factors leading from stem cells to megakaryocytes (MKs) and subsequently platelets have yet to be identified. We now report that a combination of nuclear factor erythroid-derived 2 p45 unit (p45NF-E2), Maf G, and Maf K can convert mouse fibroblast 3T3 cells and adult human dermal fibroblasts into MKs. To screen MK-inducing factors, gene expressions were compared between 3T3 cells that do not differentiate into MKs and 3T3-L1 cells known to differentiate into MKs. 3T3 cells transfected with candidate factors were cultured in a defined MK lineage induction medium. Among the tested factors, transfection with p45NF-E2/MafG/MafK lead to the highest frequency of CD41-positive cells. Adult human dermal fibroblasts transfected with these genes were cultured in MK lineage induction medium. Cultured cells had megakaryocytic features, including surface markers, ploidy, and morphology. More than 90% of MK-sized cells expressed CD41, designated induced MK (iMK). Infusion of these iMK cells into immunodeficient mice led to a time-dependent appearance of CD41-positive, platelet-sized particles. Blood samples from iMK-infused into thrombocytopenic immunodeficient mice were perfused on a collagen-coated chip, and human CD41-positive platelets were incorporated into thrombi on the chip, demonstrating their functionality. These findings demonstrate that a combination of p45NF-E2, Maf G, and Maf K is a key determinant of both megakaryopoiesis and thrombopoiesis.


Blood | 2010

FOG1 requires NuRD to promote hematopoiesis and maintain lineage fidelity within the megakaryocytic-erythroid compartment

Gregory D. Gregory; Annarita Miccio; Alexey Bersenev; Yuhuan Wang; Wei Hong; Zhe Zhang; Mortimer Poncz; Wei Tong; Gerd A. Blobel

Nuclear factors regulate the development of complex tissues by promoting the formation of one cell lineage over another. The cofactor FOG1 interacts with transcription factors GATA1 and GATA2 to control erythroid and megakaryocyte (MK) differentiation. In contrast, FOG1 antagonizes the ability of GATA factors to promote mast cell (MC) development. Normal FOG1 function in late-stage erythroid cells and MK requires interaction with the chromatin remodeling complex NuRD. Here, we report that mice in which the FOG1/NuRD interaction is disrupted (Fog(ki/ki)) produce MK-erythroid progenitors that give rise to significantly fewer and less mature MK and erythroid colonies in vitro while retaining multilineage capacity, capable of generating MCs and other myeloid lineage cells. Gene expression profiling of Fog(ki/ki) MK-erythroid progenitors revealed inappropriate expression of several MC-specific genes. Strikingly, aberrant MC gene expression persisted in mature Fog(ki/ki) MK and erythroid progeny. Using a GATA1-dependent committed erythroid cell line, select MC genes were found to be occupied by NuRD, suggesting a direct mechanism of repression. Together, these observations suggest that a simple heritable silencing mechanism is insufficient to permanently repress MC genes. Instead, the continuous presence of GATA1, FOG1, and NuRD is required to maintain lineage fidelity throughout MK-erythroid ontogeny.


Blood | 2014

High-level transgene expression in induced pluripotent stem cell–derived megakaryocytes: correction of Glanzmann thrombasthenia

Spencer K. Sullivan; Jason A. Mills; Sevasti B. Koukouritaki; Karen K. Vo; Randolph B. Lyde; Prasuna Paluru; Guoha Zhao; Li Zhai; Lisa M. Sullivan; Yuhuan Wang; Siddharth Kishore; Eyad Z. Gharaibeh; Michele P. Lambert; David A. Wilcox; Deborah L. French; Mortimer Poncz; Paul Gadue

Megakaryocyte-specific transgene expression in patient-derived induced pluripotent stem cells (iPSCs) offers a new approach to study and potentially treat disorders affecting megakaryocytes and platelets. By using a Gp1ba promoter, we developed a strategy for achieving a high level of protein expression in human megakaryocytes. The feasibility of this approach was demonstrated in iPSCs derived from two patients with Glanzmann thrombasthenia (GT), an inherited platelet disorder caused by mutations in integrin αIIbβ3. Hemizygous insertion of Gp1ba promoter-driven human αIIb complementary DNA into the AAVS1 locus of iPSCs led to high αIIb messenger RNA and protein expression and correction of surface αIIbβ3 in megakaryocytes. Agonist stimulation of these cells displayed recovery of integrin αIIbβ3 activation. Our findings demonstrate a novel approach to studying human megakaryocyte biology as well as functional correction of the GT defect, offering a potential therapeutic strategy for patients with diseases that affect platelet function.


Blood | 2012

SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models

Ronghua Meng; Yuhuan Wang; Yu Yao; Zhe Zhang; Dawn C. Harper; Harry F. G. Heijnen; Anand Sitaram; Wei Li; Graça Raposo; Mitchell J. Weiss; Mortimer Poncz; Michael S. Marks

Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.


Blood | 2015

Comparative analysis of human ex vivo-generated platelets vs. megakaryocyte-generated platelets in mice: A cautionary tale

Yuhuan Wang; Vincent Hayes; Danuta Jarocha; Xiuli Sim; Dawn C. Harper; Rudy Fuentes; Spencer K. Sullivan; Paul Gadue; Stella T. Chou; Beverly J. Torok-Storb; Michael S. Marks; Deborah L. French; Mortimer Poncz

Thrombopoiesis is the process by which megakaryocytes release platelets that circulate as uniform small, disc-shaped anucleate cytoplasmic fragments with critical roles in hemostasis and related biology. The exact mechanism of thrombopoiesis and the maturation pathways of platelets released into the circulation remain incompletely understood. We showed that ex vivo-generated murine megakaryocytes infused into mice release platelets within the pulmonary vasculature. Here we now show that infused human megakaryocytes also release platelets within the lungs of recipient mice. In addition, we observed a population of platelet-like particles (PLPs) in the infusate, which include platelets released during ex vivo growth conditions. By comparing these 2 platelet populations to human donor platelets, we found marked differences: platelets derived from infused megakaryocytes closely resembled infused donor platelets in morphology, size, and function. On the other hand, the PLP was a mixture of nonplatelet cellular fragments and nonuniform-sized, preactivated platelets mostly lacking surface CD42b that were rapidly cleared by macrophages. These data raise a cautionary note for the clinical use of human platelets released under standard ex vivo conditions. In contrast, human platelets released by intrapulmonary-entrapped megakaryocytes appear more physiologic in nature and nearly comparable to donor platelets for clinical application.


PLOS ONE | 2013

RhoA Is Essential for Maintaining Normal Megakaryocyte Ploidy and Platelet Generation

Aae Suzuki; Jae Won Shin; Yuhuan Wang; Sang H. Min; Morty Poncz; John K. Choi; Dennis E. Discher; Chris Carpenter; Lurong Lian; Liang Zhao; Yangfeng Wang; Charles S. Abrams

RhoA plays a multifaceted role in platelet biology. During platelet development, RhoA has been proposed to regulate endomitosis, proplatelet formation, and platelet release, in addition to having a role in platelet activation. These processes were previously studied using pharmacological inhibitors in vitro, which have potential drawbacks, such as non-specific inhibition or incomplete disruption of the intended target proteins. Therefore, we developed a conditional knockout mouse model utilizing the CRE-LOX strategy to ablate RhoA, specifically in megakaryocytes and in platelets to determine its role in platelet development. We demonstrated that deleting RhoA in megakaryocytes in vivo resulted in significant macrothrombocytopenia. RhoA-null megakaryocytes were larger, had higher mean ploidy, and exhibited stiff membranes with micropipette aspiration. However, in contrast to the results observed in experiments relying upon pharmacologic inhibitors, we did not observe any defects in proplatelet formation in megakaryocytes lacking RhoA. Infused RhoA-null megakaryocytes rapidly released platelets, but platelet levels rapidly plummeted within several hours. Our evidence supports the hypothesis that changes in membrane rheology caused infused RhoA-null megakaryocytes to prematurely release aberrant platelets that were unstable. These platelets were cleared quickly from circulation, which led to the macrothrombocytopenia. These observations demonstrate that RhoA is critical for maintaining normal megakaryocyte development and the production of normal platelets.


Journal of Clinical Investigation | 2015

Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells

Ji Yoon Noh; Shilpa Gandre-Babbe; Yuhuan Wang; Vincent Hayes; Yu Yao; Paul Gadue; Spencer K. Sullivan; Stella T. Chou; Kellie R. Machlus; Joseph E. Italiano; Michael Kyba; David Finkelstein; Jacob C. Ulirsch; Vijay G. Sankaran; Deborah L. French; Mortimer Poncz; Mitchell J. Weiss

Transfusion of donor-derived platelets is commonly used for thrombocytopenia, which results from a variety of clinical conditions and relies on a constant donor supply due to the limited shelf life of these cells. Embryonic stem (ES) and induced pluripotent stem (iPS) cells represent a potential source of megakaryocytes and platelets for transfusion therapies; however, the majority of current ES/iPS cell differentiation protocols are limited by low yields of hematopoietic progeny. In both mice and humans, mutations in the gene-encoding transcription factor GATA1 cause an accumulation of proliferating, developmentally arrested megakaryocytes, suggesting that GATA1 suppression in ES and iPS cell-derived hematopoietic progenitors may enhance megakaryocyte production. Here, we engineered ES cells from WT mice to express a doxycycline-regulated (dox-regulated) shRNA that targets Gata1 transcripts for degradation. Differentiation of these cells in the presence of dox and thrombopoietin (TPO) resulted in an exponential (at least 10¹³-fold) expansion of immature hematopoietic progenitors. Dox withdrawal in combination with multilineage cytokines restored GATA1 expression, resulting in differentiation into erythroblasts and megakaryocytes. Following transfusion into recipient animals, these dox-deprived mature megakaryocytes generated functional platelets. Our findings provide a readily reproducible strategy to exponentially expand ES cell-derived megakaryocyte-erythroid progenitors that have the capacity to differentiate into functional platelet-producing megakaryocytes.


Nature Communications | 2014

Loss of PIKfyve in platelets causes a lysosomal disease leading to inflammation and thrombosis in mice

Sang H. Min; Aae Suzuki; Timothy J. Stalker; Liang Zhao; Yuhuan Wang; Chris McKennan; Matthew J. Riese; Jessica Guzman; Suhong Zhang; Lurong Lian; Rohan P. Joshi; Ronghua Meng; Steven H. Seeholzer; John K. Choi; Gary A. Koretzky; Michael S. Marks; Charles S. Abrams

PIKfyve is essential for the synthesis of phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2] and for the regulation of endolysosomal membrane dynamics in mammals. PtdIns(3,5)P2 deficiency causes neurodegeneration in mice and humans, but the role of PtdIns(3,5)P2 in non-neural tissues is poorly understood. Here we show that platelet-specific ablation of PIKfyve in mice leads to accelerated arterial thrombosis, and, unexpectedly, also to inappropriate inflammatory responses characterized by macrophage accumulation in multiple tissues. These multiorgan defects are attenuated by platelet depletion in vivo, confirming that they reflect a platelet-specific process. PIKfyve ablation in platelets induces defective maturation and excessive storage of lysosomal enzymes that are released upon platelet activation. Impairing lysosome secretion from PIKfyve-null platelets in vivo markedly attenuates the multiorgan defects, suggesting that platelet lysosome secretion contributes to pathogenesis. Our findings identify PIKfyve as an essential regulator for platelet lysosome homeostasis, and demonstrate the contributions of platelet lysosomes to inflammation, arterial thrombosis and macrophage biology.

Collaboration


Dive into the Yuhuan Wang's collaboration.

Top Co-Authors

Avatar

Mortimer Poncz

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Charles S. Abrams

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Rudy Fuentes

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Michael S. Marks

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Vincent Hayes

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Gerd A. Blobel

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Lurong Lian

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

M. Anna Kowalska

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Ronghua Meng

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Deborah L. French

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge