Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuhuan Zhang is active.

Publication


Featured researches published by Yuhuan Zhang.


Theriogenology | 2011

Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2/-deoxycytidine and trichostatin A

Ys Wang; Xianrong Xiong; Z.X. An; Lili Wang; J. Liu; Fusheng Quan; Song Hua; Yuhuan Zhang

We previously reported that treatment of both donor cells and early cloned embryos with a combination of 0.01 μM 5-aza-2(/)-Deoxycytidine (5-aza-dC) and 0.05 μM trichostatin A (TSA) significantly improved development of cloned bovine embryos in vitro. In the present study, we investigated the effect of this combination treatment on the in vivo development potency and postnatal survivability of cloned calves. Blastocysts (77 and 82 blastocysts derived from untreated (control) and treated groups, respectively) were individually transferred to recipient cows. Relative to the control group, the combination treatment of both donor cells and early embryos with 5-aza-dC and TSA dramatically increased the cleavage rate (49.2 vs 63.6%, P < 0.05) at 24 h of culture, and blastocyst development rate on Days 6 and 7 of culture (18.8 vs 33.9% and 27.1 vs 38.5% respectively, P < 0.05). Although pregnancy rate did not differ 40 d after transfer, it was lower in the treated than control group 90 d after transfer (7.8 vs 29.3%, P < 0.05). In the control group, there were three calves born to 77 recipients (only two survived beyond 60 d), whereas in the treated group, 17 calves were born to 82 recipients, and 11 survived beyond 60 d. In conclusion, a combination treatment of donor cells and early cloned embryos with 5-aza-dC and TSA significantly enhanced development of somatic cell cloned bovine embryos in vivo; cloning efficiency (number of surviving calves at 60 d of birth/number of recipient cows) was increased from 2.6 to 13.4%.


Theriogenology | 2009

An immortalized goat mammary epithelial cell line induced with human telomerase reverse transcriptase (hTERT) gene transfer

Yulong He; Yuehong Wu; Xiaoning He; Feng-Jun Liu; Xiaoying He; Yuhuan Zhang

Although mammary epithelial cell lines can provide a rapid and reliable indicator of gene expression efficiency of transgenic animals, their short lifespan greatly limits this application. To provide stable and long lifespan cells, goat mammary epithelial cells (GMECs) were transduced with pLNCX2-hTERT by retrovirus-mediated gene transfer. Transduced GMECs were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR), proliferation assays, karyotype analysis, telomerase activity assay, western blotting, soft agar assay, and injection into nude mice. Non-transduced GMECs were used as a control. The hTERT-GMECs had higher telomerase activity and extended proliferative lifespan compared to non-transfected GMECs; even after Passage 50, hTERT-GMECs had a near diploid complement of chromosomes. Furthermore, they did not gain the anchorage-independent growth property and were not associated with a malignant phenotype in vitro or in vivo.


Reproduction in Domestic Animals | 2011

Effect of mSOF and G1.1/G2.2 Media on the Developmental Competence of SCNT‐Derived Bovine Embryos

Ys Wang; Shuang Tang; Zx An; Wz Li; J. Liu; Fusheng Quan; Song Hua; Yuhuan Zhang

The objective of this study was to compare the effect of two culture media: modified synthetic oviductal fluid (mSOF) and G1.2/G2.2, on the developmental competence of bovine somatic cell-cloned embryos. Cloned embryos were produced by transferring adult skin fibroblasts into enucleated MII oocytes. After activation, the reconstructed embryos were randomly allotted to either mSOF or G1.2/G2.2 for culture (the embryos were transferred from G1.2 to G2.2 on days 3 of culture). The development competence of cloned embryos in these two culture systems was compared in terms of cleavage rate, blastocyst formation rate and apoptosis cell number in day 7 blastocyts. To investigate the in vivo developmental competence of cloned embryos in the two culture systems, a total of 87 and 104 blastocysts derived from mSOF and G1.2/G2.2 medium groups were transferred individually to recipient Angus cows, respectively. No differences were observed in terms of cleavage rate, day 7 blastocyst rate and blastocyst cell number between these two culture systems. However, the day 6 blastocyst formation rate was significantly higher in G1.2/G2.2 than that in mSOF. In addition, blastocysts cultured in mSOF have a higher percentage of apoptotic blastomeres compared to those in G1.2/G2.2 (8.5 ± 1.2 vs 16.8 ± 1.5, p<0.05). Although difference in pregnancy rate was not observed 40 days after embryo transfer, significantly higher pregnancy rate was observed in G1.2/G2.2 group after 90 days of embryo transfer (12.4% vs 37.5%, p<0.05). Moreover, calving rate was significantly improved in G1.2/G2.2 group compared to mSOF group (27.9% vs 6.7%, p<0.05). In conclusion, our results indicate that G1.2/G2.2 can improve developmental competence of bovine SCNT embryos both in vitro and in vivo, which is more suitable for culture of bovine SCNT embryos than mSOF medium.


Theriogenology | 2011

Effects of interval between fusion and activation, cytochalasin B treatment, and number of transferred embryos, on cloning efficiency in goats

J. Liu; Lan Li; S. Du; X.Y. Bai; Hui Zhang; S. Tang; M.T. Zhao; B.H. Ma; Fusheng Quan; Xiaomin Zhao; Yuhuan Zhang

To improve the efficiency of somatic cell nuclear transfer (SCNT) in goats, we evaluated the effects of the interval between fusion and activation (1 to 5 h), cytochalasin B (CB) treatment after electrofusion, and the number of transferred embryos on the in vivo and in vitro development of cloned caprine embryos. The majority of the reconstructed embryos had condensed chromosomes and metaphase-like chromosomes at 2 and 3 h after fusion; cleavage and blastocyst rates from those two groups were higher (P < 0.05) than those of embryos activated 1, 4, or 5 h after fusion. Treatment with CB between fusion and activation improved in vitro and in vivo development of nuclear transfer (NT) goat embryos by reducing the fragmentation rate (P < 0.05). Although there were no significant differences in NT efficiency, pregnancy rate and kids born per recipient were increased by transfer of 20 or 30 embryos per recipient compared with 10 embryos. We concluded that CB treatment for 2 to 3 h between fusion and activation was an efficient method for generating cloned goats by somatic cell NT. In addition, increasing the number of embryos transferred to each recipient resulted in more live offspring from fewer recipients.


Animal Reproduction Science | 2011

Lowering storage temperature during ovary transport is beneficial to the developmental competence of bovine oocytes used for somatic cell nuclear transfer

Ys Wang; Xiao-E Zhao; Jian Min Su; Z.X. An; Xianrong Xiong; Lili Wang; J. Liu; Fusheng Quan; Song Hua; Yuhuan Zhang

The objective of this study was to determine the effect of storage temperature during ovary transport on the developmental competence of bovine oocytes for use in somatic cell nuclear transfer (SCNT). Ovaries obtained from a slaughterhouse were stored in physiological saline for 3-4h at one of the three temperatures: 15 °C, 25 °C, or 35 °C. The developmental competence of oocytes used for SCNT was ascertained by cleavage and blastocyst formation rate, total cell number, apoptosis index, and the relative abundance of Bax and Hsp70.1 in day 7 blastocysts. Ovaries stored at 35 °C for 3-4h reduced the recovery rate of grade I and II oocytes compared with those stored at 25 °C or 15 °C (45.1±0.7% vs. 76.7±1.2% or 74.8±2.0%, P<0.05). The proportion of oocytes matured to the MII stage (maturation rate) for oocytes stored at 35 °C was significantly lower than those stored at 25 °C or 15 °C (51.3±0.9% vs. 75.1±1.4% or 71.7±1.3%, P<0.05). Cleavage rate (77.7±2.1%, 77.9±1.1% and 72.1±0.7% for 15 °C, 25 °C and 35 °C groups, respectively) and blastocyst formation rate (39.1±0.5%, 36.8±1.4% and 32.2±0.9% for 15 °C, 25 °C and 35 °C groups, respectively) following SCNT were not significantly different between treatments. Oocytes from ovaries stored at 15 °C, however, produced blastocysts with higher cell numbers (97.3±8.6 vs. 80.2±10.8 or 77.4±11.7; P<0.05) and lower apoptotic index (5.1±1.3 vs. 13.5±1.6 or 18.6±1.1, P<0.05) than those stored at 25 °C or 35 °C. The relative abundance of Bax and Hsp70.1 in day 7 blastocysts produced from oocytes derived from ovaries stored at 15 °C was lower than those stored at 25 °C or 35 °C (P<0.05). It was concluded that a storage temperature of 15 °C for a 3-4h period had a significant beneficial effect on the quality and developmental competence of oocytes used for SCNT due to the alleviation of stresses on the oocytes compared with those subjected to storage temperatures of 25 °C or 35 °C.


Biosensors and Bioelectronics | 2015

DNA-mediated gold nanoparticle signal transducers for combinatorial logic operations and heavy metal ions sensing

Yuhuan Zhang; Wei Liu; Wentao Zhang; Shaoxuan Yu; Xiaoyue Yue; Wenxin Zhu; Daohong Zhang; Ys Wang; Jianlong Wang

Herein, the structure of two DNA strands which are complementary except fourteen T-T and C-C mismatches was programmed for the design of the combinatorial logic operation by utilizing the different protective capacities of single chain DNA, part-hybridized DNA and completed-hybridized DNA on unmodified gold nanoparticles. In the presence of either Hg(2+) or Ag(+), the T-Hg(2+)-T or C-Ag(+)-C coordination chemistry could lead to the formation of part-hybridized DNA which keeps gold nanoparticles from clumping after the addition of 40 μL 0.2M NaClO4 solution, but the protection would be screened by 120 μL 0.2M NaClO4 solution. While the coexistence of Hg(2+), Ag(+) caused the formation of completed-hybridized DNA and the protection for gold nanoparticles lost in either 40 μL or 120 μL NaClO4 solutions. Benefiting from sharing of the same inputs of Hg(2+) and Ag(+), OR and AND logic gates were easily integrated into a simple colorimetric combinatorial logic operation in one system, which make it possible to execute logic gates in parallel to mimic arithmetic calculations on a binary digit. Furthermore, two other logic gates including INHIBIT1 and INHIBIT2 were realized to integrated with OR logic gate both for simultaneous qualitative discrimination and quantitative determination of Hg(2+) and Ag(+). Results indicate that the developed logic system based on the different protective capacities of DNA structure on gold nanoparticles provides a new pathway for the design of the combinatorial logic operation in one system and presents a useful strategy for development of advanced sensors, which may have potential applications in multiplex chemical analysis and molecular-scale computer design.


Theriogenology | 2009

Efficiency of human lactoferrin transgenic donor cell preparation for SCNT.

M.T. Zhao; H. Lin; F.J. Liu; Fusheng Quan; G.H. Wang; J. Liu; Song Hua; Yuhuan Zhang

The combination of somatic cell nuclear transfer (SCNT) and transgenic technology leads to the production of transgenic cloned animals, wherein the preparation of competent transgenic donor cells is the pivotal upstream step. The purpose of this study was to establish an efficient procedure to prepare human lactoferrin (hLTF) transgenic donor cells for SCNT. Thus, two cell culture systems were employed: caprine mammary epithelial cells (for evaluation of the hTLF transgenic expression in vitro), and fetal-derived fibroblast cells (for identification of competent transgenic donor cells). Induced by hormonal signals, recombinant hLTF was detected in the supernatant of transfected mammary epithelial cells by Western blot. Reliable hLTF transgenic fibroblast cell clones were identified by screening with multiple PCR amplification, EGFP fluorescence, and chromosomal counting (32.5+/-2.3%). This study may provide an effective upstream system to prepare SCNT donor cells for the production of human recombinant pharmaceuticals from the milk of transgenic animals.


Journal of Agricultural and Food Chemistry | 2016

Highly Sensitive and Selective Determination of Tertiary Butylhydroquinone in Edible Oils by Competitive Reaction Induced “On–Off–On” Fluorescent Switch

Xiaoyue Yue; Wenxin Zhu; Shuyue Ma; Shaoxuan Yu; Yuhuan Zhang; Jing Wang; Yanru Wang; Daohong Zhang; Jianlong Wang

As one of most common synthetic phenolic antioxidants, tertiary butylhydroquinone (TBHQ) has received increasing attention due to the potential risk for liver damage and carcinogenesis. Herein, a simple and rapid fluorescent switchable methodology was developed for highly selective and sensitive determination of TBHQ by utilizing the competitive interaction between the photoinduced electron transfer (PET) effect of carbon dots (CDs)/Fe(III) ions and the complexation reaction of TBHQ/Fe(III) ions. This novel fluorescent switchable sensing platform allows determining TBHQ in a wider range from 0.5 to 80 μg mL(-1) with a low detection limit of 0.01 μg mL(-1). Furthermore, high specificity and good accuracy with recoveries ranging from 94.29 to 105.82% in spiked edible oil samples are obtained with the present method, confirming its applicability for the trace detection of TBHQ in a complex food matrix. Thus, the present method provides a novel and effective fluorescent approach for rapid and specific screening of TBHQ in common products, which is beneficial for monitoring and reducing the risk of TBHQ overuse during food storage.


Reproduction in Domestic Animals | 2014

The Influence of Ovarian Stromal/Theca Cells During In Vitro Culture on Steroidogenesis, Proliferation and Apoptosis of Granulosa Cells Derived from the Goat Ovary

Mingning Qiu; J. Liu; Chengquan Han; B Wu; Zhongcai Yang; Feng Su; Fusheng Quan; Yuhuan Zhang

Early follicular development is closely related to oocyte-granulosa cells-ovarian stromal cells/theca cells. The aim of the present study was to investigate the effects of ovarian cortical, medullary stromal and theca cells on oestradiol and progesterone biosynthesis, proliferation and apoptosis of goat ovary granulosa cells in vitro. Using Transwell coculture system, we evaluated steroidogenesis, cell proliferation and apoptosis, and some molecular expressions regarding steroidogenic enzyme, luteinizing hormone receptor and apoptosis-related genes in granulosa cells. The results indicated that ovarian stromal/theca cells were able to stimulate oestradiol and progesterone production, promote cell proliferation and inhibit apoptosis of granulosa cells. Among all the three kinds of cells, theca cells affected strongly on granulosa cell function, and ovarian medullary stromal cells had the weakest effect on granulosa cells. These findings would provide an important knowledge of cell interaction among follicular cells during follicular development.


RSC Advances | 2014

“Pulling” π-conjugated polyene biomolecules into water: enhancement of light-thermal stability and bioactivity by a facile graphene oxide-based phase-transfer approach

Wentao Zhang; Shaoxuan Yu; Wei Liu; Daohong Zhang; Wenxin Zhu; Yuhuan Zhang; Wanqiang Wu; Lixue Zhang; Jianlong Wang

This work demonstrated that graphene oxide (GO) could not only be exploited as a nanovector to efficiently transfer π-conjugated polyene biomolecules from the organic phase to the aqueous phase, but also could enhance light-thermal stability and bioactivity of the transferred π-conjugated polyene biomolecules.

Collaboration


Dive into the Yuhuan Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge