Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuichi Inubushi is active.

Publication


Featured researches published by Yuichi Inubushi.


Nature Methods | 2014

Determination of damage-free crystal structure of an X-ray–sensitive protein using an XFEL

Kunio Hirata; Kyoko Shinzawa-Itoh; Naomine Yano; Shuhei Takemura; Koji Kato; Miki Hatanaka; Kazumasa Muramoto; Takako Kawahara; Tomitake Tsukihara; Eiki Yamashita; Kensuke Tono; Go Ueno; Takaaki Hikima; Hironori Murakami; Yuichi Inubushi; Makina Yabashi; Tetsuya Ishikawa; Masaki Yamamoto; Takashi Ogura; Hiroshi Sugimoto; Jian Ren Shen; Shinya Yoshikawa; Hideo Ago

We report a method of femtosecond crystallography for solving radiation damage–free crystal structures of large proteins at sub-angstrom spatial resolution, using a large single crystal and the femtosecond pulses of an X-ray free-electron laser (XFEL). We demonstrated the performance of the method by determining a 1.9-Å radiation damage–free structure of bovine cytochrome c oxidase, a large (420-kDa), highly radiation-sensitive membrane protein.


Review of Scientific Instruments | 2014

Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

Takashi Kameshima; Shun Ono; Togo Kudo; Kyosuke Ozaki; Yoichi Kirihara; Kazuo Kobayashi; Yuichi Inubushi; Makina Yabashi; Toshio Horigome; Andrew D. Holland; Karen Holland; David W. Burt; Hajime Murao; Takaki Hatsui

This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10(14) photon/mm(2). The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 μm square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.


Nature Communications | 2013

Two-colour hard X-ray free-electron laser with wide tunability

Toru Hara; Yuichi Inubushi; Tetsuo Katayama; Takahiro Sato; Hitoshi Tanaka; Takashi Tanaka; Tadashi Togashi; Kazuaki Togawa; Kensuke Tono; Makina Yabashi; Tetsuya Ishikawa

Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.


Physical Review Letters | 2013

Deep Inner-Shell Multiphoton Ionization by Intense X-Ray Free-Electron Laser Pulses

H. Fukuzawa; Sang-Kil Son; K. Motomura; S. Mondal; K. Nagaya; S. Wada; XiaoJing Liu; R. Feifel; T. Tachibana; Yuta Ito; M. Kimura; T. Sakai; K. Matsunami; H. Hayashita; J. Kajikawa; Per Johnsson; M. Siano; Edwin Kukk; Benedikt Rudek; Benjamin Erk; Lutz Foucar; E. Robert; Catalin Miron; Kensuke Tono; Yuichi Inubushi; Takaki Hatsui; Makina Yabashi; Makoto Yao; Robin Santra; K. Ueda

We have investigated multiphoton multiple ionization dynamics of xenon atoms using a new x-ray free-electron laser facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that Xe(n+) with n up to 26 is produced at a photon energy of 5.5 keV. The observed high charge states (n≥24) are produced via five-photon absorption, evidencing the occurrence of multiphoton absorption involving deep inner shells. A newly developed theoretical model, which shows good agreement with the experiment, elucidates the complex pathways of sequential electronic decay cascades accessible in heavy atoms. The present study of heavy-atom ionization dynamics in high-intensity hard-x-ray pulses makes a step forward towards molecular structure determination with x-ray free-electron lasers.


Nature Communications | 2014

Generation of 10 20 W cm −2 hard X-ray laser pulses with two-stage reflective focusing system

Hidekazu Mimura; Hirokatsu Yumoto; Satoshi Matsuyama; Takahisa Koyama; Kensuke Tono; Yuichi Inubushi; Tadashi Togashi; Takahiro Sato; Jangwoo Kim; Ryosuke Fukui; Yasuhisa Sano; Makina Yabashi; Haruhiko Ohashi; Tetsuya Ishikawa; Kazuto Yamauchi

Intense X-ray fields produced with hard X-ray free-electron laser (XFEL) have made possible the study of nonlinear X-ray phenomena. However, the observable phenomena are still limited by the power density. Here, we present a two-stage focusing system consisting of ultra-precise mirrors, which can generate an extremely intense X-ray field. The XFEL beam, enlarged with upstream optics, is focused with downstream optics that have high numerical aperture. A grating interferometer is used to monitor the wavefront to achieve optimum focusing. Finally, we generate an extremely small spot of 30 × 55 nm with an extraordinary power density of over 1 × 10(20) W cm(-2) using 9.9 keV XFEL light. The achieved power density provides novel opportunities to elucidate unexplored nonlinear phenomena in the X-ray region, which will advance development on quantum X-ray optics, astronomical physics and high-energy density science.


Nature Communications | 2014

Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses

Rui Xu; Huaidong Jiang; Changyong Song; Jose A. Rodriguez; Zhifeng Huang; Chien Chun Chen; Daewoong Nam; Jaehyun Park; Marcus Gallagher-Jones; Sangsoo Kim; Sunam Kim; Akihiro Suzuki; Yuki Takayama; Tomotaka Oroguchi; Yukio Takahashi; Jiadong Fan; Yunfei Zou; Takaki Hatsui; Yuichi Inubushi; Takashi Kameshima; Koji Yonekura; Kensuke Tono; Tadashi Togashi; Takahiro Sato; Masaki Yamamoto; Masayoshi Nakasako; Makina Yabashi; Tetsuya Ishikawa; Jianwei Miao

Conventional three-dimensional (3D) structure determination methods require either multiple measurements at different sample orientations or a collection of serial sections through a sample. Here we report the experimental demonstration of single-shot 3D structure determination of an object; in this case, individual gold nanocrystals at ~5.5 nm resolution using ~10 fs X-ray free-electron laser pulses. Coherent diffraction patterns are collected from high-index-faceted nanocrystals, each struck by an X-ray free-electron laser pulse. Taking advantage of the symmetry of the nanocrystal and the curvature of the Ewald sphere, we reconstruct the 3D structure of each nanocrystal from a single-shot diffraction pattern. By averaging a sufficient number of identical nanocrystals, this method may be used to determine the 3D structure of nanocrystals at atomic resolution. As symmetry exists in many virus particles, this method may also be applied to 3D structure studies of such particles at nanometer resolution on femtosecond time scales.


Nature | 2015

Atomic inner-shell laser at 1.5-angstrom wavelength pumped by an X-ray free-electron laser

Hitoki Yoneda; Yuichi Inubushi; Kazunori Nagamine; Yurina Michine; Haruhiko Ohashi; Hirokatsu Yumoto; Kazuto Yamauchi; Hidekazu Mimura; Hikaru Kitamura; Tetsuo Katayama; Tetsuya Ishikawa; Makina Yabashi

Since the invention of the first lasers in the visible-light region, research has aimed to produce short-wavelength lasers that generate coherent X-rays; the shorter the wavelength, the better the imaging resolution of the laser and the shorter the pulse duration, leading to better temporal resolution in probe measurements. Recently, free-electron lasers based on self-amplified spontaneous emission have made it possible to generate a hard-X-ray laser (that is, the photon energy is of the order of ten kiloelectronvolts) in an ångström-wavelength regime, enabling advances in fields from ultrafast X-ray spectrosopy to X-ray quantum optics. An atomic laser based on neon atoms and pumped by a soft-X-ray (that is, a photon energy of less than one kiloelectronvolt) free-electron laser has been achieved at a wavelength of 14 nanometres. Here, we use a copper target and report a hard-X-ray inner-shell atomic laser operating at a wavelength of 1.5 ångströms. X-ray free-electron laser pulses with an intensity of about 1019 watts per square centimetre tuned to the copper K-absorption edge produced sufficient population inversion to generate strong amplified spontaneous emission on the copper Kα lines. Furthermore, we operated the X-ray free-electron laser source in a two-colour mode, with one colour tuned for pumping and the other for the seed (starting) light for the laser.


Nature Communications | 2014

Saturable absorption of intense hard X-rays in iron

Hitoki Yoneda; Yuichi Inubushi; Makina Yabashi; Tetsuo Katayama; T. Ishikawa; Haruhiko Ohashi; Hirokatsu Yumoto; Kazuto Yamauchi; Hidekazu Mimura; Hikaru Kitamura

In 1913, Maurice de Broglie discovered the presence of X-ray absorption bands of silver and bromine in photographic emulsion. Over the following century, X-ray absorption spectroscopy was established as a standard basis for element analysis, and further applied to advanced investigation of the structures and electronic states of complex materials. Here we show the first observation of an X-ray-induced change of absorption spectra of the iron K-edge for 7.1-keV ultra-brilliant X-ray free-electron laser pulses with an extreme intensity of 10(20) W cm(-2). The highly excited state yields a shift of the absorption edge and an increase of transparency by a factor of 10 with an improvement of the phase front of the transmitted X-rays. This finding, the saturable absorption of hard X-rays, opens a promising path for future innovations of X-ray science by enabling novel attosecond active optics, such as lasing and dynamical spatiotemporal control of X-rays.


Applied Physics Letters | 2013

Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

Tetsuo Katayama; Yuichi Inubushi; Yuki Obara; Takahiro Sato; Tadashi Togashi; Kensuke Tono; Takaki Hatsui; Takashi Kameshima; Atanu Bhattacharya; Yoshihiro Ogi; Naoya Kurahashi; Kazuhiko Misawa; Toshinori Suzuki; Makina Yabashi

We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10−3), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10−3, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.


Optics Express | 2014

Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method

Yuki Obara; Tetsuo Katayama; Yoshihiro Ogi; Takayuki Suzuki; Naoya Kurahashi; Shutaro Karashima; Yuhei Chiba; Yusuke Isokawa; Tadashi Togashi; Yuichi Inubushi; Makina Yabashi; Toshinori Suzuki; Kazuhiko Misawa

We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 μm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 μJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.

Collaboration


Dive into the Yuichi Inubushi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haruhiko Ohashi

Toyohashi University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge