Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuichi Nishitani is active.

Publication


Featured researches published by Yuichi Nishitani.


Journal of Biological Chemistry | 2006

Crystal Structures of N-Acetylglucosamine-phosphate Mutase, a Member of the α-d-Phosphohexomutase Superfamily, and Its Substrate and Product Complexes

Yuichi Nishitani; Daisuke Maruyama; Tsuyoshi Nonaka; Akiko Kita; Takaaki A. Fukami; Toshiyuki Mio; Hisafumi Yamada-Okabe; Toshiko Yamada-Okabe; Kunio Miki

N-Acetylglucosamine-phosphate mutase (AGM1) is an essential enzyme in the synthetic process of UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is a UDP sugar that serves as a biosynthetic precursor of glycoproteins, mucopolysaccharides, and the cell wall of bacteria. Thus, a specific inhibitor of AGM1 from pathogenetic fungi could be a new candidate for an antifungal reagent that inhibits cell wall synthesis. AGM1 catalyzes the conversion of N-acetylglucosamine 6-phosphate (GlcNAc-6-P) into N-acetylglucosamine 1-phosphate (GlcNAc-1-P). This enzyme is a member of the α-d-phosphohexomutase superfamily, which catalyzes the intramolecular phosphoryl transfer of sugar substrates. Here we report the crystal structures of AGM1 from Candida albicans for the first time, both in the apoform and in the complex forms with the substrate and the product, and discuss its catalytic mechanism. The structure of AGM1 consists of four domains, of which three domains have essentially the same fold. The overall structure is similar to those of phosphohexomutases; however, there are two additional β-strands in domain 4, and a circular permutation occurs in domain 1. The catalytic cleft is formed by four loops from each domain. The N-acetyl group of the substrate is recognized by Val-370 and Asn-389 in domain 3, from which the substrate specificity arises. By comparing the substrate and product complexes, it is suggested that the substrate rotates about 180° on the axis linking C-4 and the midpoint of the C-5—O-5 bond in the reaction.


Journal of Biological Chemistry | 2007

Crystal Structure of Uridine-diphospho-N-acetylglucosamine Pyrophosphorylase from Candida albicans and Catalytic Reaction Mechanism

Daisuke Maruyama; Yuichi Nishitani; Tsuyoshi Nonaka; Akiko Kita; Takaaki A. Fukami; Toshiyuki Mio; Hisafumi Yamada-Okabe; Toshiko Yamada-Okabe; Kunio Miki

Uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc) is a precursor of the bacterial and fungal cell wall. It is also used in a component of N-linked glycosylation and the glycosylphosphoinositol anchor of eukaryotic proteins. It is synthesized from N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and uridine-5′-triphosphate (UTP) by UDP-GlcNAc pyrophosphorylase (UAP). This is an SN2 reaction; the non-esterified oxygen atom of the GlcNAc-1-P phosphate group attacks the α-phosphate group of UTP. We determined crystal structures of UAP from Candida albicans (CaUAP1) without any ligands and also complexed with its substrate or with its product. The series of structures in different forms shows the induced fit movements of CaUAP1. Three loops approaching the ligand molecule close the active site when ligand is bound. In addition, Lys-421, instead of the metal ion in prokaryotic UAPs, is coordinated by both phosphate groups of UDP-Glc-NAc and acts as a cofactor. However, a magnesium ion enhances the enzymatic activity of CaUAP1, and thus we propose that the magnesium ion increases the affinity between UTP and the enzyme by coordinating to the α- and γ-phosphate group of UTP.


Journal of Bacteriology | 2012

Enzymatic Characterization of AMP Phosphorylase and Ribose-1,5-Bisphosphate Isomerase Functioning in an Archaeal AMP Metabolic Pathway

Riku Aono; Takaaki Sato; Ayumu Yano; Shosuke Yoshida; Yuichi Nishitani; Kunio Miki; Tadayuki Imanaka; Haruyuki Atomi

AMP phosphorylase (AMPpase), ribose-1,5-bisphosphate (R15P) isomerase, and type III ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to constitute a novel pathway involved in AMP metabolism in the Archaea. Here we performed a biochemical examination of AMPpase and R15P isomerase from Thermococcus kodakarensis. R15P isomerase was specific for the α-anomer of R15P and did not recognize other sugar compounds. We observed that activity was extremely low with the substrate R15P alone but was dramatically activated in the presence of AMP. Using AMP-activated R15P isomerase, we reevaluated the substrate specificity of AMPpase. AMPpase exhibited phosphorylase activity toward CMP and UMP in addition to AMP. The [S]-v plot (plot of velocity versus substrate concentration) of the enzyme toward AMP was sigmoidal, with an increase in activity observed at concentrations higher than approximately 3 mM. The behavior of the two enzymes toward AMP indicates that the pathway is intrinsically designed to prevent excess degradation of intracellular AMP. We further examined the formation of 3-phosphoglycerate from AMP, CMP, and UMP in T. kodakarensis cell extracts. 3-Phosphoglycerate generation was observed from AMP alone, and from CMP or UMP in the presence of dAMP, which also activates R15P isomerase. 3-Phosphoglycerate was not formed when 2-carboxyarabinitol 1,5-bisphosphate, a Rubisco inhibitor, was added. The results strongly suggest that these enzymes are actually involved in the conversion of nucleoside monophosphates to 3-phosphoglycerate in T. kodakarensis.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer

Satoshi Watanabe; Takumi Kawashima; Yuichi Nishitani; Tamotsu Kanai; Takehiko Wada; Kenji Inaba; Haruyuki Atomi; Tadayuki Imanaka; Kunio Miki

Significance The metal ions in proteins are correctly incorporated by specific metallochaperones. However, it remains unclear how metallochaperones regulate their metal binding affinity during acquisition of correct metal ions and deliver them to target proteins. In this study, we have determined the crystal structures of a transient complex between a Ni metallochaperone HypA and its partner ATPase protein HypBAT, which incorporate a Ni ion into [NiFe] hydrogenase. The structures reveal that HypBAT induces conformational change of HypA through complex formation, leading to formation of a Ni binding site. Consequently, the Ni-binding affinity of HypA is increased from micromolar to nanomolar range (by ∼600-fold). These results indicate that HypBAT functions as a metallochaperone enhancer, which regulates metal binding affinity of metallochaperones. The Ni atom at the catalytic center of [NiFe] hydrogenases is incorporated by a Ni-metallochaperone, HypA, and a GTPase/ATPase, HypB. We report the crystal structures of the transient complex formed between HypA and ATPase-type HypB (HypBAT) with Ni ions. Transient association between HypA and HypBAT is controlled by the ATP hydrolysis cycle of HypBAT, which is accelerated by HypA. Only the ATP-bound form of HypBAT can interact with HypA and induces drastic conformational changes of HypA. Consequently, upon complex formation, a conserved His residue of HypA comes close to the N-terminal conserved motif of HypA and forms a Ni-binding site, to which a Ni ion is bound with a nearly square-planar geometry. The Ni binding site in the HypABAT complex has a nanomolar affinity (Kd = 7 nM), which is in contrast to the micromolar affinity (Kd = 4 µM) observed with the isolated HypA. The ATP hydrolysis and Ni binding cause conformational changes of HypBAT, affecting its association with HypA. These findings indicate that HypA and HypBAT constitute an ATP-dependent Ni acquisition cycle for [NiFe]-hydrogenase maturation, wherein HypBAT functions as a metallochaperone enhancer and considerably increases the Ni-binding affinity of HypA.


Journal of Biological Chemistry | 2010

Structure-based catalytic optimization of a type III Rubisco from a hyperthermophile

Yuichi Nishitani; Shosuke Yoshida; Masahiro Fujihashi; Kazuya Kitagawa; Takashi Doi; Haruyuki Atomi; Tadayuki Imanaka; Kunio Miki

The Calvin-Benson-Bassham cycle is responsible for carbon dioxide fixation in all plants, algae, and cyanobacteria. The enzyme that catalyzes the carbon dioxide-fixing reaction is ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) belongs to the type III group, and shows high activity at high temperatures. We have previously found that replacement of the entire α-helix 6 of Tk-Rubisco with the corresponding region of the spinach enzyme (SP6 mutant) results in an improvement of catalytic performance at mesophilic temperatures, both in vivo and in vitro, whereas the former and latter half-replacements of the α-helix 6 (SP4 and SP5 mutants) do not yield such improvement. We report here the crystal structures of the wild-type Tk-Rubisco and the mutants SP4 and SP6, and discuss the relationships between their structures and enzymatic activities. A comparison among these structures shows the movement and the increase of temperature factors of α-helix 6 induced by four essential factors. We thus supposed that an increase in the flexibility of the α-helix 6 and loop 6 regions was important to increase the catalytic activity of Tk-Rubisco at ambient temperatures. Based on this structural information, we constructed a new mutant, SP5-V330T, which was designed to have significantly greater flexibility in the above region, and it proved to exhibit the highest activity among all mutants examined to date. The thermostability of the SP5-V330T mutant was lower than that of wild-type Tk-Rubisco, providing further support on the relationship between flexibility and activity at ambient temperatures.


Proteins | 2016

Crystal structure of archaeal ketopantoate reductase complexed with coenzyme a and 2-oxopantoate provides structural insights into feedback regulation

Yoshiki Aikawa; Yuichi Nishitani; Hiroya Tomita; Haruyuki Atomi; Kunio Miki

Coenzyme A (CoA) plays essential roles in a variety of metabolic pathways in all three domains of life. The biosynthesis pathway of CoA is strictly regulated by feedback inhibition. In bacteria and eukaryotes, pantothenate kinase is the target of feedback inhibition by CoA. Recent biochemical studies have identified ketopantoate reductase (KPR), which catalyzes the NAD(P)H‐dependent reduction of 2‐oxopantoate to pantoate, as a target of the feedback inhibition by CoA in archaea. However, the mechanism for recognition of CoA by KPR is still unknown. Here we report the crystal structure of KPR from Thermococcus kodakarensis in complex with CoA and 2‐oxopantoate. CoA occupies the binding site of NAD(P)H, explaining the competitive inhibition by CoA. Our structure reveals a disulfide bond between CoA and Cys84 that indicates an irreversible inhibition upon binding of CoA. The structure also suggests the cooperative binding of CoA and 2‐oxopantoate that triggers a conformational closure and seems to facilitate the disulfide bond formation. Our findings provide novel insights into the mechanism that regulates biosynthesis of CoA in archaea. Proteins 2016; 84:374–382.


Proteins | 2016

Crystal structure of a [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1

Sunghark Kwon; Yuichi Nishitani; Satoshi Watanabe; Yoshinori Hirao; Tadayuki Imanaka; Tamotsu Kanai; Haruyuki Atomi; Kunio Miki

A [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1 (TkHybD) is involved in the cleavage of the C‐terminal residues of [NiFe] hydrogenase large subunits by Ni recognition. Here, we report the crystal structure of TkHybD at 1.82 Å resolution to better understand this process. TkHybD exhibits an α/β/α sandwich fold with conserved residues responsible for the Ni recognition. Comparisons of TkHybD with homologous proteins also reveal that they share a common overall architecture, suggesting that they have similar catalytic functions. Our results including metal binding site prediction provide insight into the substrate recognition and catalysis mechanism of TkHybD. Proteins 2016; 84:1321–1327.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2015

Expression, purification, crystallization and X-ray diffraction studies of the molecular chaperone prefoldin from Homo sapiens.

Yoshiki Aikawa; Hiroshi Kida; Yuichi Nishitani; Kunio Miki

Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 123.2, b = 152.4, c = 105.9 Å.


Journal of Molecular Biology | 2013

Structure analysis of archaeal AMP phosphorylase reveals two unique modes of dimerization

Yuichi Nishitani; Riku Aono; Akira Nakamura; Takaaki Sato; Haruyuki Atomi; Tadayuki Imanaka; Kunio Miki

AMP phosphorylase (AMPpase) catalyzes the initial reaction in a novel AMP metabolic pathway recently found in archaea, converting AMP and phosphate into adenine and ribose 1,5-bisphosphate. Gel-filtration chromatography revealed that AMPpase from Thermococcus kodakarensis (Tk-AMPpase) forms an exceptionally large macromolecular structure (>40-mers) in solution. To investigate its unique multimerization feature, we determined the first crystal structures of Tk-AMPpase, in the apo-form and in complex with substrates. Structures of two truncated forms of Tk-AMPpase (Tk-AMPpaseΔN84 and Tk-AMPpaseΔC10) clarified that this multimerization is achieved by two dimer interfaces within a single molecule: one by the central domain and the other by the C-terminal domain, which consists of an unexpected domain-swapping interaction. The N-terminal domain, characteristic of archaeal enzymes, is essential for enzymatic activity, participating in multimerization as well as domain closure of the active site upon substrate binding. Moreover, biochemical analysis demonstrated that the macromolecular assembly of Tk-AMPpase contributes to its high thermostability, essential for an enzyme from a hyperthermophile. Our findings unveil a unique archaeal nucleotide phosphorylase that is distinct in both function and structure from previously known members of the nucleoside phosphorylase II family.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2006

Purification, crystallization and preliminary X-ray diffraction studies of UDP-N-acetylglucosamine pyrophosphorylase from Candida albicans

Daisuke Maruyama; Yuichi Nishitani; Tsuyoshi Nonaka; Akiko Kita; Takaaki A. Fukami; Toshiyuki Mio; Hisafumi Yamada-Okabe; Toshiko Yamada-Okabe; Kunio Miki

UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 A resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 A, alpha = 90.01, beta = 97.72, gamma = 92.88 degrees, whereas those of the product complex belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 A.

Collaboration


Dive into the Yuichi Nishitani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge