Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuichi Yamasaki is active.

Publication


Featured researches published by Yuichi Yamasaki.


Journal of the American Chemical Society | 2008

PEG-Detachable Polyplex Micelles Based on Disulfide-Linked Block Catiomers as Bioresponsive Nonviral Gene Vectors

Seiji Takae; Kanjiro Miyata; Makoto Oba; Takehiko Ishii; Nobuhiro Nishiyama; Keiji Itaka; Yuichi Yamasaki; Hiroyuki Koyama; Kazunori Kataoka

PEG-based polyplex micelles, which can detach the surrounding PEG chains responsive to the intracellular reducing environment, were developed as nonviral gene vectors. A novel block catiomer, PEG-SS-P[Asp(DET)], was designed as follows: (i) insertion of biocleavable disulfide linkage between PEG and polycation segment to trigger PEG detachment and (ii) a cationic segment based on poly(aspartamide) with a flanking N-(2-aminoethyl)-2-aminoethyl group, P[Asp(DET)], in which the Asp(DET) unit acts as a buffering moiety inducing endosomal escape with minimal cytotoxicity. The polyplex micelles from PEG-SS-P[Asp(DET)] and plasmid DNA (pDNA) stably dispersed in an aqueous medium with a narrowly distributed size range of approximately 80 nm due to the formation of hydrophilic PEG palisades while undergoing aggregation by the addition of 10 mM dithiothreitol (DTT) at the stoichiometric charge ratio, indicating the PEG detachment from the micelles through the disulfide cleavage. The PEG-SS-P[Asp(DET)] micelles showed both a 1-3 orders of magnitude higher gene transfection efficiency and a more rapid onset of gene expression than PEG-P[Asp(DET)] micelles without disulfide linkages, due to much more effective endosomal escape based on the PEG detachment in endosome. These findings suggest that the PEG-SS-P[Asp(DET)] micelle may have promising potential as a nonviral gene vector exerting high transfection with regulated timing and minimal cytotoxicity.


Biomacromolecules | 2009

Environment-Responsive Block Copolymer Micelles with a Disulfide Cross-Linked Core for Enhanced siRNA Delivery

Satoru Matsumoto; R. James Christie; Nobuhiro Nishiyama; Kanjiro Miyata; Atsushi Ishii; Makoto Oba; Hiroyuki Koyama; Yuichi Yamasaki; Kazunori Kataoka

A core-shell-type polyion complex (PIC) micelle with a disulfide cross-linked core was prepared through the assembly of iminothiolane-modified poly(ethylene glycol)-block-poly(L-lysine) [PEG-b-(PLL-IM)] and siRNA at a characteristic optimum mixing ratio. The PIC micelles showed a spherical shape of approximately 60 nm in diameter with a narrow distribution. The micellar structure was maintained at physiological ionic strength but was disrupted under reductive conditions because of the cleavage of disulfide cross-links, which is desirable for siRNA release in the intracellular reductive environment. Importantly, environment-responsive PIC micelles achieved 100-fold higher siRNA transfection efficacy compared with non-cross-linked PICs prepared from PEG-b-poly(L-lysine), which were not stable at physiological ionic strength. PICs formed with PEG-b-(PLL-IM) at nonoptimum ratios did not assemble into micellar structure and did not achieve gene silencing following siRNA transfection. These findings show the feasibility of core cross-linked PIC micelles as carriers for therapeutic siRNA and show that stable micellar structure is critical for effective siRNA delivery into target cells.


Journal of the American Chemical Society | 2008

Polyplexes from poly(aspartamide) bearing 1,2-diaminoethane side chains induce pH-selective, endosomal membrane destabilization with amplified transfection and negligible cytotoxicity

Kanjiro Miyata; Makoto Oba; Masataka Nakanishi; Shigeto Fukushima; Yuichi Yamasaki; Hiroyuki Koyama; Nobuhiro Nishiyama; Kazunori Kataoka

Polyplexes assembled from poly(aspartamide) derivatives bearing 1,2-diaminoethane side chains, [PAsp(DET)] display amplified in vitro and in vivo transfection activity with minimal cytotoxicity. To elucidate the molecular mechanisms involved in this unique function of PAsp(DET) polyplexes, the physicochemical and biological properties of PAsp(DET) were thoroughly evaluated with a control bearing 1,3-diaminopropane side chains, PAsp(DPT). Between PAsp(DET) and PAsp(DPT) polyplexes, we observed negligible physicochemical differences in particle size and zeta-potential. However, the one methylene variation between 1,2-diaminoethane and 1,3-diaminopropane drastically altered the transfection profiles. In sharp contrast to the constantly high transfection efficacy of PAsp(DET) polyplexes, even in regions of excess polycation to plasmid DNA (pDNA) (high N/P ratio), PAsp(DPT) polyplexes showed a significant drop in the transfection efficacy at high N/P ratios due to the progressively increased cytotoxicity with N/P ratio. The high cytotoxicity of PAsp(DPT) was closely correlated to its strong destabilization effect on cellular membrane estimated by hemolysis, leakage assay of cytoplasmic enzyme (LDH assay), and confocal laser scanning microscopic observation. Interestingly, PAsp(DET) revealed minimal membrane destabilization at physiological pH, yet there was significant enhancement in the membrane destabilization at the acidic pH mimicking the late endosomal compartment (pH approximately 5). Apparently, the pH-selective membrane destabilization profile of PAsp(DET) corresponded to a protonation change in the flanking diamine unit, i.e., the monoprotonated gauche form at physiological pH and diprotonated anti form at acidic pH. These significant results suggest that the protonated charge state of 1,2-diaminoethane may play a substantial role in the endosomal disruption. Moreover, this novel approach for endosomal disruption neither perturbs the membranes of cytoplasmic vesicles nor organelles at physiological pH. Thus, PAsp(DET) polyplexes, residing in late endosomal or lysosomal states, smoothly exit into the cytoplasm for successful transfection without compromising cell viability.


Journal of Gene Medicine | 2004

In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine

Keiji Itaka; Atsushi Harada; Yuichi Yamasaki; Kozo Nakamura; Hiroshi Kawaguchi; Kazunori Kataoka

The investigation into the intracellular mechanisms for gene expression has acquired great impetus for the improvement of the transfection efficiency by a non‐viral gene delivery system.


ChemMedChem | 2006

A PEG‐Based Biocompatible Block Catiomer with High Buffering Capacity for the Construction of Polyplex Micelles Showing Efficient Gene Transfer toward Primary Cells

Naoki Kanayama; Shigeto Fukushima; Nobuhiro Nishiyama; Keiji Itaka; Woo Dong Jang; Kanjiro Miyata; Yuichi Yamasaki; Ung-il Chung; Kazunori Kataoka

Nonviral gene vectors from synthetic catiomers (polyplexes) are a promising alternative to viral vectors. In particular, many recent efforts have been devoted to the construction of biocompatible polyplexes for in vivo nonviral gene therapy. A promising approach in this regard is the use of poly(ethylene glycol) (PEG)‐based block catiomers, which form a nanoscaled core–shell polyplex with biocompatible PEG palisades. In this study, a series of PEG‐based block catiomers with different amine functionalities were newly prepared by a simple and affordable synthetic procedure based on an aminolysis reaction, and their utility as gene carriers was investigated. This study revealed that the block catiomers carrying the ethylenediamine unit at the side chain are capable of efficient and less toxic transfection even toward primary cells, highlighting critical structural factors of the cationic units in the construction of polyplex‐type gene vectors. Moreover, the availability of the polyplex micelle for transfection with primary osteoblasts will facilitate its use for bone regeneration in vivo mediated by nonviral gene transfection.


Journal of the American Chemical Society | 2010

Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties.

Yasutaka Anraku; Akihiro Kishimura; Makoto Oba; Yuichi Yamasaki; Kazunori Kataoka

Fabrication of monodispersed, submicrometer-sized vesicles (nanosomes) that form through self-assembly possessing a thin and permeable membrane remains a significant challenge. Conventional fabrication of nanosomes through self-assembly of amphiphilic molecules often requires cumbersome processes using organic solvents combined with physical procedures (e.g., sonication, thermal treatment, and membrane filtration) to obtain unilamellar structures with a controlled size distribution. Herein, we report the first example of spontaneously formed submicrometer-sized unilamellar polyion complex vesicles (Nano-PICsomes) via self-assembly of a pair of oppositely charged PEG block aniomer and homocatiomer in an aqueous medium. Detailed dynamic light scattering and transmission electron microscopic analysis revealed that vesicle sizes can be controlled in the range of 100-400 nm with a narrow size distribution, simply by changing the total polymer concentration. Also, each Nano-PICsome was composed of a uniform single PIC membrane, the thickness of which is around 10-15 nm, regardless of its size. Fluorescence correlation spectroscopy measurement verified that Nano-PICsomes were able to encapsulate water-soluble fluorescent macromolecules in the inner water phase and release them slowly into the exterior. Moreover, cross-linking of the vesicle membrane allows tuning of permeability, enhancement in stability under physiological conditions, and preservation of size and structure even after freeze-drying and centrifugation treatment. Finally, Nano-PICsomes showed a long circulation time in the bloodstream of mice. Precise control of the particle size and structure of hollow capsules through simple aqueous self-assembly and easy modification of their properties by cross-linking is quite novel and fascinating in terms of ecological, low-cost, and low-energy fabrication processes as well as the potential utility in the biomedical arena.


Nature Biotechnology | 2004

Nanospheres for DNA separation chips

Mari Tabuchi; Masanori Ueda; Noritada Kaji; Yuichi Yamasaki; Yukio Nagasaki; Kenichi Yoshikawa; Kazunori Kataoka; Yoshinobu Baba

We report here a technology to carry out separations of a wide range of DNA fragments with high speed and high resolution. The approach uses a nanoparticle medium, core-shell type nanospheres, in conjunction with a pressurization technique during microchip electrophoresis. DNA fragments up to 15 kilobase pairs (kbp) were successfully analyzed within 100 s without observing any saturation in migration rates. DNA fragments migrate in the medium while maintaining their characteristic molecular structure. To guarantee effective DNA loading and electrofocusing in the nanosphere solution, we developed a double pressurization technique. Optimal pressure conditions and concentrations of packed nanospheres are critical to achieve improved DNA separations.


Biomaterials | 2010

Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system

Hiroyasu Takemoto; Atsushi Ishii; Kanjiro Miyata; Masataka Nakanishi; Makoto Oba; Takehiko Ishii; Yuichi Yamasaki; Nobuhiro Nishiyama; Kazunori Kataoka

An siRNA-grafted polymer through disulfide linkage was prepared to improve the physicochemical properties and transfection efficacies of the polyion complexes (PICs) as a nanocarrier of siRNA. The siRNA-grafted polymer formed stable PICs due to its larger numbers and higher density of anionic charges compared with monomeric siRNA, leading to effective internalization by cultured cells. Following the endosomal escape of the PIC, the disulfide linkage of the siRNA-grafted polymer allowed efficient siRNA release from the PIC under intracellular reductive conditions. Consequently, the PIC from the siRNA-grafted polymer showed a potent gene silencing effect without cytotoxicity or immunogenicity, demonstrating a promising feature of the siRNA-grafted polymer to construct the PIC-based nanocarrier for in vivo siRNA delivery.


Physical Review Letters | 2008

Correlation between Spin Helicity and an Electric Polarization Vector in Quantum-Spin Chain Magnet LiCu2O2

S. Seki; Yuichi Yamasaki; Minoru Soda; M. Matsuura; K. Hirota; Y. Tokura

Measurements of polarized neutron scattering were performed on a S=1/2 chain multiferroic LiCu2O2. In the ferroelectric ground state with the spontaneous polarization along the c axis, the existence of transverse spiral spin component in the bc plane was confirmed. When the direction of electric polarization is reversed, the vector spin chirality as defined by C_(ij)=S_(i)xS_(j) (i and j being the neighboring spin sites) is observed to be reversed, indicating that the spin-current model or the inverse Dzyaloshinskii-Moriya mechanism is applicable even to this e_(g)-electron quantum-spin system. Differential scattering intensity of polarized neutrons shows a large discrepancy from that expected for the classical-spin bc-cycloidal structure, implying the effect of large quantum fluctuation.


Journal of the American Chemical Society | 2010

Quantized Folding of Plasmid DNA Condensed with Block Catiomer into Characteristic Rod Structures Promoting Transgene Efficacy

Kensuke Osada; Hiroki Oshima; Daigo Kobayashi; Motoyoshi Doi; Manabu Enoki; Yuichi Yamasaki; Kazunori Kataoka

Highly regulated folding of plasmid DNA (pDNA) through polyion complexation with the synthetic block catiomer, poly(ethylene glycol)-block-poly(L-lysine) (PEG-PLys), was found to occur in such a way that rod structures are formed with a quantized length of 1/2(n + 1) of the original pDNA length folding by n times. The folding process of pDNA was elucidated with regard to rigidity of the double-stranded DNA structure and topological restriction of the supercoiled closed-circular form, and a mechanism based on Eulers buckling theory was proposed. Folded pDNA exhibited higher gene expression efficiency compared to naked pDNA in a cell-free transcription/translation assay system, indicating that the packaging of pDNA into a polyion complex core surrounded by a PEG palisade is a promising strategy for constructing nonviral gene carrier systems. Extension of this finding may provide a reasonable model to further understand the packaging mechanism of supercoiled DNA structures in nature.

Collaboration


Dive into the Yuichi Yamasaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiji Itaka

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge