Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuji Nakada is active.

Publication


Featured researches published by Yuji Nakada.


Nature | 2012

A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response

Zhao Chen; Katherine A. Cheng; Zandra E. Walton; Yuchuan Wang; Hiromichi Ebi; Takeshi Shimamura; Yan Liu; Tanya Tupper; Jing Ouyang; Jie Li; Peng Gao; Michele S. Woo; Chunxiao Xu; Masahiko Yanagita; Abigail Altabef; Shumei Wang; Charles Lee; Yuji Nakada; Christopher G. Peña; Yanping Sun; Yoko Franchetti; Catherine Yao; Amy Saur; Michael D. Cameron; Mizuki Nishino; D. Neil Hayes; Matthew D. Wilkerson; Patrick J. Roberts; Carrie B. Lee; Nabeel Bardeesy

Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a ‘co-clinical’ trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.


Development | 2005

Sequential Roles for Mash1 and Ngn2 in the Generation of Dorsal Spinal Cord Interneurons

Amy W. Helms; James Battiste; R. Michael Henke; Yuji Nakada; Nicolas Simplicio; François Guillemot; Jane E. Johnson

The dorsal spinal cord contains a diverse array of neurons that connect sensory input from the periphery to spinal cord motoneurons and brain. During development, six dorsal neuronal populations (dI1-dI6) have been defined by expression of homeodomain factors and position in the dorsoventral axis. The bHLH transcription factors Mash1 and Ngn2 have distinct roles in specification of these neurons. Mash1 is necessary and sufficient for generation of most dI3 and all dI5 neurons. Unexpectedly, dI4 neurons are derived from cells expressing low levels or no Mash1, and this population increases in the Mash1 mutant. Ngn2 is not required for any specific neuronal cell type but appears to modulate the composition of neurons that form. In the absence of Ngn2, there is an increase in the number of dI3 and dI5 neurons, in contrast to the effects produced by activity of Mash1. Mash1 is epistatic to Ngn2, and, unlike the relationship between other neural bHLH factors, cross-repression of expression is not detected. Thus, bHLH factors, particularly Mash1 and related family members Math1 and Ngn1, provide a code for generating neuronal diversity in the dorsal spinal cord with Ngn2 serving to modulate the number of neurons in each population formed.


Genes & Development | 2008

A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling.

Kei Hori; Justyna Cholewa-Waclaw; Yuji Nakada; Stacey M. Glasgow; Toshihiko Masui; R. Michael Henke; Hendrik Wildner; Benedetta Martarelli; Thomas M. Beres; Jonathan A. Epstein; Mark A. Magnuson; Raymond J. MacDonald; Carmen Birchmeier; Jane E. Johnson

Neural networks are balanced by inhibitory and excitatory neuronal activity. The formation of these networks is initially generated through neuronal subtype specification controlled by transcription factors. The basic helix-loop-helix (bHLH) transcription factor Ptf1a is essential for the generation of GABAergic inhibitory neurons in the dorsal spinal cord, cerebellum, and retina. The transcription factor Rbpj is a transducer of the Notch signaling pathway that functions to maintain neural progenitor cells. Here we demonstrate Ptf1a and Rbpj interact in a complex that is required in vivo for specification of the GABAergic neurons, a function that cannot be substituted by the classical form of the bHLH heterodimer with E-protein or Notch signaling through Rbpj. We show that a mutant form of Ptf1a without the ability to bind Rbpj, while retaining its ability to interact with E-protein, is incapable of inducing GABAergic (Pax2)- and suppressing glutamatergic (Tlx3)-expressing cells in the chick and mouse neural tube. Moreover, we use an Rbpj conditional mutation to demonstrate that Rbpj function is essential for GABAergic specification, and that this function is independent of the Notch signaling pathway. Together, these findings demonstrate the requirement for a Ptf1a-Rbpj complex in controlling the balanced formation of inhibitory and excitatory neurons in the developing spinal cord, and point to a novel Notch-independent function for Rbpj in nervous system development.


Development | 2004

Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification.

Yuji Nakada; Thomas L. Hunsaker; R. Michael Henke; Jane E. Johnson

Many members of the basic helix-loop-helix (bHLH) family of transcription factors play pivotal roles in the development of a variety of tissues and organisms. We identify activities for the neural bHLH proteins Mash1 and Math1 in inducing neuronal differentiation, and in inducing the formation of distinct dorsal interneuron subtypes in the chick neural tube. Although both factors induce neuronal differentiation, each factor has a distinct activity in the type of dorsal interneuron that forms, with overexpression of Math1 increasing dI1 interneurons, and Mash1 increasing dI3 interneurons. Math1 and Mash1 function as transcriptional activators for both of these functions. Furthermore, we define discrete domains within the bHLH motif that are required for these different activities in neural development. Helix 1 of the Mash1 HLH domain is necessary for Mash1 to be able to promote neuronal differentiation, and is sufficient to confer this activity to the non-neural bHLH factor MyoD. In contrast, helix 2 of Math1, and both helix 1 and 2 of Mash1, are the domains required for the neuronal specification activities of these factors. The requirement for distinct domains within the HLH motif of Mash1 and Math1 for driving neuronal differentiation and cell-type specification probably reflects the importance of unique protein-protein interactions involved in these functions.


Development | 2003

Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation

Philip J. Ebert; John R. Timmer; Yuji Nakada; Amy W. Helms; Preeti Parab; Ying Liu; Thomas L. Hunsaker; Jane E. Johnson

Math1 is a basic helix-loop-helix transcription factor expressed in progenitor cells that give rise to dorsal commissural interneurons in the spinal cord, granule cells of the cerebellum, and sensory cells in the inner ear and skin. Transcriptional regulation of this gene is tightly controlled both temporally and spatially during nervous system development. The signals that mediate this regulation are likely integrated at the Math1 enhancer, which is highly conserved among vertebrate species. We have identified the zinc-finger transcription factor Zic1 as a regulator of Math1 expression. Zic1 binds a novel conserved site within the Math1 enhancer, and represses both the expression of endogenous Cath1 (chicken homolog of Math1) and the activity of a Math1 enhancer driven lacZ reporter when expressed in chick neural tubes. Repression by Zic1 blocks the autoregulatory activity of Math1 itself. Although previous reports have shown that Zic1 and Math1 are both induced by BMP signaling, these genes appear to have opposing functions, as Math1 acts to promote neuronal differentiation in the chick neural tube and excess Zic1 appears to block differentiation. Zic1-mediated repression of Cath1 transcription may modulate the temporal switch between the progenitor state and differentiating dorsal cell types during neural tube development.


Journal of Clinical Investigation | 2014

PAX7 expression defines germline stem cells in the adult testis

Gina M. Aloisio; Yuji Nakada; Hatice D. Saatcioglu; Christopher G. Peña; Michael D. Baker; Edward Tarnawa; Jishnu Mukherjee; Hema Manjunath; Abhijit Bugde; Anita Sengupta; James F. Amatruda; Ileana Cuevas; F. Kent Hamra; Diego H. Castrillon

Spermatogenesis is a complex, multistep process that maintains male fertility and is sustained by rare germline stem cells. Spermatogenic progression begins with spermatogonia, populations of which express distinct markers. The identity of the spermatogonial stem cell population in the undisturbed testis is controversial due to a lack of reliable and specific markers. Here we identified the transcription factor PAX7 as a specific marker of a rare subpopulation of A(single) spermatogonia in mice. PAX7+ cells were present in the testis at birth. Compared with the adult testis, PAX7+ cells constituted a much higher percentage of neonatal germ cells. Lineage tracing in healthy adult mice revealed that PAX7+ spermatogonia self-maintained and produced expanding clones that gave rise to mature spermatozoa. Interestingly, in mice subjected to chemotherapy and radiotherapy, both of which damage the vast majority of germ cells and can result in sterility, PAX7+ spermatogonia selectively survived, and their subsequent expansion contributed to the recovery of spermatogenesis. Finally, PAX7+ spermatogonia were present in the testes of a diverse set of mammals. Our data indicate that the PAX7+ subset of A(single) spermatogonia functions as robust testis stem cells that maintain fertility in normal spermatogenesis in healthy mice and mediate recovery after severe germline injury, such as occurs after cancer therapy.


The Journal of Neuroscience | 2008

Manipulating Robo Expression In Vivo Perturbs Commissural Axon Pathfinding in the Chick Spinal Cord

Stacey L. Reeber; Nozomi Sakai; Yuji Nakada; Judy Dumas; Kostantin Dobrenis; Jane E. Johnson; Zaven Kaprielian

In vertebrate embryos, most spinal commissural axons cross the ventral midline (VM) and project either alongside or significant distances away from the floor plate (FP). The upregulation of repulsive Robo1/2 receptors on postcrossing commissural axons, in mammals, presumably allows these axons to respond to the midline-associated repellents, Slit1–3, facilitating their expulsion from, and prohibiting their reentry into, the FP. Compelling data suggest that Robo3 represses Robo1/2 function on precrossing axons and that Robo1/2 inhibit attractive guidance receptors on postcrossing axons, thereby ensuring that decussated axons are selectively responsive to midline Slits. However, whether Robo1/2 expel decussated commissural axons from the VM and/or prevent their reentry into the FP has not been explicitly established in vivo. Furthermore, some commissural axons do not require Robo1/2 to elaborate appropriate contralateral projections in the mouse spinal cord. Here, we use unilateral in ovo electroporation together with Atoh1 and Neurog1 enhancer elements to visualize, and assess the consequences of manipulating Robo expression on, dl1 and dl2 chick commissural axons. In response to misexpressing a cytoplasmic truncation of Robo1 and/or Robo2, which should block all Robo–ligand interactions, postcrossing commissural axons extend alongside, but do not project away from or reenter the FP. In contrast, misexpression of full-length Robo2 prevents many commissural axons from crossing the VM. Together, these findings support key and selective in vivo roles for Robo receptors in presumably altering the responsiveness of decussated commissural axons and facilitating their expulsion from the VM within the chick spinal cord.


Journal of Clinical Investigation | 2015

LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment

Christopher G. Peña; Yuji Nakada; Hatice D. Saatcioglu; Gina M. Aloisio; Ileana Cuevas; Song Zhang; David Miller; Jayanthi S. Lea; Kwok-Kin Wong; Ralph J. DeBerardinis; Antonio L. Amelio; Rolf A. Brekken; Diego H. Castrillon

Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities.


PLOS ONE | 2013

The LKB1 tumor suppressor as a biomarker in mouse and human tissues.

Yuji Nakada; Thomas G. Stewart; Christopher G. Peña; Song Zhang; Ni Zhao; Nabeel Bardeesy; Norman E. Sharpless; Kwok-Kin Wong; D. Neil Hayes; Diego H. Castrillon

Germline mutations in the LKB1 gene (also known as STK11) cause the Peutz-Jeghers Syndrome, and somatic loss of LKB1 has emerged as causal event in a wide range of human malignancies, including melanoma, lung cancer, and cervical cancer. The LKB1 protein is a serine-threonine kinase that phosphorylates AMP-activated protein kinase (AMPK) and other downstream targets. Conditional knockout studies in mouse models have consistently shown that LKB1 loss promotes a highly-metastatic phenotype in diverse tissues, and human studies have demonstrated a strong association between LKB1 inactivation and tumor recurrence. Furthermore, LKB1 deficiency confers sensitivity to distinct classes of anticancer drugs. The ability to reliably identify LKB1-deficient tumors is thus likely to have important prognostic and predictive implications. Previous research studies have employed polyclonal antibodies with limited success, and there is no widely-employed immunohistochemical assay for LKB1. Here we report an assay based on a rabbit monoclonal antibody that can reliably detect endogenous LKB1 protein (and its absence) in mouse and human formalin-fixed, paraffin-embedded tissues. LKB1 protein levels determined through this assay correlated strongly with AMPK phosphorylation both in mouse and human tumors, and with mRNA levels in human tumors. Our studies fully validate this immunohistochemical assay for LKB1 in paraffin-embedded formalin tissue sections. This assay should be broadly useful for research studies employing mouse models and also for the development of human tissue-based assays for LKB1 in diverse clinical settings.


Oncogene | 2013

Cooperation between p53 and the telomere-protecting shelterin component Pot1a in endometrial carcinogenesis.

Esra A. Akbay; Christopher G. Peña; D. Ruder; J. A. Michel; Yuji Nakada; Sen Pathak; Asha S. Multani; Sandy Chang; Diego H. Castrillon

Type II endometrial cancer (EMCA) represents only 10% of all EMCAs, but accounts for 40% of EMCA-related mortality. Previous studies of human tumors have shown an association between Type II tumors and damaged telomeres. We hypothesized that the lack of murine Type II EMCA models is due to the extremely long telomeres in laboratory mouse strains. We previously showed that telomerase-null mice with critically short telomeres developed endometrial lesions histologically resembling endometrial intraepithelial carcinoma (EIC), the accepted precursor for Type II EMCA. However, these mice did not develop invasive endometrial adenocarcinoma, and instead succumbed prematurely to multi-organ failure. Here, we modeled critical telomere attrition by conditionally inactivating Pot1a, a component of the shelterin complex that stabilizes telomeres, within endometrial epithelium. Inactivation of Pot1a by itself did not stimulate endometrial carcinogenesis, and did not result in detectable DNA damage or apoptosis in endometrium. However, simultaneous inactivation of Pot1a and p53 resulted in EIC-like lesions by 9 months indistinguishable from those seen in late generation telomerase-null mice. These lesions progressed to invasive endometrial adenocarcinomas as early as 9 months of age with metastatic disease in 100% of the animals by 15 months. These tumors were poorly differentiated endometrial adenocarcinomas with prominent nuclear atypia, resembling human Type II cancers. Furthermore, these tumors were aneuploid with double-stranded DNA breaks and end-to-end telomere fusions and most were tetraploid or near-tetraploid. These studies lend further support to the hypothesis that telomeric instability has a critical role in Type II endometrial carcinogenesis and provides an intriguing in-vivo correlate to recent studies implicating telomere-dependent tetraploidization as an important mechanism in carcinogenesis.

Collaboration


Dive into the Yuji Nakada's collaboration.

Top Co-Authors

Avatar

Christopher G. Peña

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Diego H. Castrillon

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gina M. Aloisio

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ileana Cuevas

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jane E. Johnson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael D. Baker

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hatice D. Saatcioglu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hesham A. Sadek

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

R. Michael Henke

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Majid Ezzati

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge