Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuji Tasaka is active.

Publication


Featured researches published by Yuji Tasaka.


Physics of Fluids | 2006

Hysteretic mode exchange in the wake of two circular cylinders in tandem

Yuji Tasaka; Lionel Schouveiler; Patrice Le Gal

Our experimental study is devoted to the analysis of the flow past two tandem circular cylinders near the vortex shedding threshold. A recent bidimensional numerical analysis of this flow [Mizushima and Suehiro, Phys. Fluids 17, 104107 (2005)] has predicted that the bifurcation diagram should become complex in the vicinity of the instability threshold. Subcritical and saddle node bifurcations that lead to hysteretic exchanges between two different modes of vortex shedding were detected for particular distances of separation of the cylinders. We present here visualizations and velocity measurements of this flow in a water channel that prove the robustness of the complexity of the bifurcation diagram in real flows.


Journal of Physics: Conference Series | 2005

Experimental investigation of natural convection induced by internal heat generation

Yuji Tasaka; Y Kudoh; Yasushi Takeda; Takatoshi Yanagisawa

Dilatation of a convection cell with respect to its Rayleigh number, one of the problems in internally heated convection, was quantitatively investigated by analyzing temperature field in a cell. The temperature field visualized by a thermo-chromic liquid crystal (TLC) expresses the cell dilatation. A calibration system was developed to convert the visualized photographs of the temperature field to the temperature field. A calibration curve correlating color information extracted from the photograph and temperature was determined from the approximately linear temperature distribution in the horizontal fluid layer using the hue method. Photos taken at various internal Rayleigh numbers were converted to the temperature field by the obtained curve. Extracting individual cells from a temperature field achieves a quantitative expression of the cell dilatation as the variation of the wavenumber of the cell with Rayleigh number increases. The temperature profile in a cell shows that high temperature areas appear at the apexes of the cell, largely different from the profile obtained by linear theory.


Journal of Visualization | 2010

Visualization of transient interfacial waves induced by spin-up of two immiscible fluid layers

Shuhei Fujimoto; Yuichi Murai; Yuji Tasaka; Yasushi Takeda

Interfacial waves of two immiscible layers in a spin-up container were investigated using experimental visualization. While the interface near the central part rose up, instability waves propagated in an azimuthal direction on the interface. These waves were mainly caused by Kelvin–Helmholtz instability for the velocity difference between two layers during spin-up, but had complicated transient characteristics owing to the rotation in a closed system. We visualized the structure of the interfacial waves by the use of three types of optical characteristics of the interface. Image processing provided the detailed factors of the interfacial waves that were classified in four life stages from their generation to disappearance. The initial generation process involved many frequency modes due to a large velocity difference, and then a low mode stood out during the growth, and disappeared with an ellipsoidal sloshing mode to achieve the rigid rotation in both layers.Graphical Abstract


Measurement Science and Technology | 2009

Development of an ultrasonic void fraction profiler

Yuichi Murai; Shoko Ohta; Akinari Shigetomi; Yuji Tasaka; Yasushi Takeda

A method for measuring the spatial distribution of the void fraction in bubbly two-phase flow is presented. The method is referred to as ultrasonic void fraction profiling since it is based on the signal processing of an ultrasonic pulse scattering on a bubble interface. The method is established using two processes for the ultrasonic sensing of bubbles. One approach is to detect the bubble interface along a measurement line, i.e. the path of the ultrasonic pulse in the liquid. The interface is captured using two types of signal-processing schemes: the echo intensity method and the Doppler method. The other approach is to reconstruct the void fraction profile from the number of bubble interfaces. A theoretical formula for the estimation is proposed by considering ultrasonic reflection in a suspension of bubbles. The validity of the formula is examined with theoretical and numerical bases. Finally, the method developed here is applied to four flow configurations for the demonstration, in which the void fraction profile governs the modulation of liquid flow field.


Journal of Fluid Mechanics | 2009

Flow transitions in the surface switching of rotating fluid

Yuji Tasaka; Makoto Iima

We study ‘surface switching’ quantitatively in flows driven by the constant rotation of the endwall of an open cylindrical vessel reported by Suzuki, Iima & Hayase ( Phys. Fluids , vol. 18, 2006, p. 101701): the deformed free surface switches between axisymmetric and non-axisymmetric shapes accompanied by irregular vertical oscillation. Detailed simultaneous measurements showed that the magnitude of the velocity fluctuations (turbulent intensity) temporally varies greatly and are strongly correlated with the surface height, suggesting that dynamic switching between laminar and turbulent states is accompanied by vessel-scale surface shape changes. The study also identified clear hysteresis in the turbulent intensity arising from changes in the Reynolds number; the bifurcation diagram consists of two overlapping branches representing a high-intensity (turbulent) state and a low-intensity (laminar) state. Based on the results, a switching mechanism is suggested.


Physics of Fluids | 2013

Intensified and attenuated waves in a microbubble Taylor–Couette flow

Tomoaki Watamura; Yuji Tasaka; Yuichi Murai

The effect of the presence of microbubbles on a flow state is experimentally investigated in a Taylor–Couette flow with azimuthal waves, in order to examine the interaction mechanism of bubbles and flows that result in drag reduction. The average diameter of the bubbles is 60 μm, which is smaller than the Kolmogorov length scale, and the maximum void fraction is 1.2 × 10−4 at the maximum case. The modifications of the fluid properties, bulk density, effective viscosity, and the extra energy input caused by the addition of microbubbles are expected to have a small effect on modifying flow states. The power of the basic wave propagating in the azimuthal direction is enhanced; its modulation, however, is decreased by adding microbubbles in the flow regime corresponding to modulated Taylor vortex flow. Moreover, the gradient of the azimuthal velocity near the walls, source of the wall shear stress, decreases by 10%. The modified velocity distribution by adding microbubbles is comparable to that obtained with ...


Journal of Visualization | 2008

Visualization of a Rotating Flow under Large-Deformed Free Surface Using Anisotropic Flakes

Yuji Tasaka; Kentaro Ito; Makoto Iima

This study aims to clarify the relationship between the deformation of a free surface and flow transition in a “switching phenomenon” process. In a flow driven by a rotating disk in a cylindrical open vessel, the free surface irregularly changes its shape from axisymmetric to nonaxisymmetric and vice versa with repeating up-and-down motion (so-called “switching phenomenon”). The flow under the free surface was visualized by anisotropic flakes. When the free surface assumes a parabolic shape, the flow is distinguished by three regions; local circulation region, rigid vortex region and meridional circulation region. The flow transition in the switching phenomenon was shown by snapshots and movies of the visualized flow; the flow near the free surface is laminar even if the shape of the free surface changes to nonaxisymmetric during the time at which the free surface attaches to the bottom of the vessel. After the free surface detaches from the disk, the flow near the free surface becomes turbulent. When the free surface changes to axisymmetric while descending to the bottom, the flow changes from turbulent to laminar flow and the local circulation region reemerges at the center of the vessel.


Journal of Visualization | 2013

Development of ultrasonic visualizer for capturing the characteristics of viscoelastic fluids

Takahisa Shiratori; Yuji Tasaka; Yuichi Murai; Yasushi Takeda

In the field of rheology, properties of non-Newtonian fluids have been traditionally represented on graphs such as viscosity curves. In this paper, we propose a visualizer to express the fluid properties as visualized fluid motions in a rotating cylinder. To highlight different fluid motions, three patterns of rotation were given to the cylinder: rapid start of constant rotation (spin-up), rapid stop from constant rotation (spin-down), and periodic rotation. Relationships between fluid motion and fluid properties are discussed by comparing velocity profiles for three fluids: silicone oil, yogurt, and a polyacrylamide (PAA) solution. Ultrasonic velocity profiler (UVP) was used to obtain spatio-temporal velocity maps. The velocity maps reflect essential rheological properties, such as shear thinning, yield stress, and elasticity. Two additional display modes are proposed to explore fluid motions due to viscoelasticity of the PAA solution and yogurt: a grid deformation field and a shear rate field. These two visualizations can provide intuitive understanding of viscoelasticity because deformation and shear rate determine elastic and viscous stresses, respectively. In spin-down tests, the recovery of deformed grids, which is caused by elasticity, can be explicitly observed. Further, the shear rate distributions indicate that kinetic energy of the fluid dissipates near the lateral wall right after the wall stops rotating. In short, these two quantity fields visualize energy conversion among kinetic, elastic, and thermal energy; such energy conversions are characteristic of viscoelastic fluids.Graphical Abstract


Journal of Visualization | 2008

Particle Tracking Velocimetry Applied for Fireworks: A Demonstration of Vector Field Measurement in Hundreds Meter Space

Yuichi Murai; Yoshihiko Oishi; Yuji Tasaka; Yasushi Takeda

Particle tracking velocimetry (PTV) is applied for measuring the motions of luminous particles in fireworks. The objective of the study is to clarify the technical problems encountering in large-scale quantitative visualization in natural environment. The major problems are found to be uncontrolled background in nature, low pixel resolution relative to particle size, and large perspective. The ways to deal with these problems in current technological level are discussed. In the application, two cameras are located at 1.3 km from the launching point with 30-degree opening angle to implement 3-D PTV. The transient 3-D velocity distributions of around 200 m-scale diameter fireworks are obtained during the light emission from the explosion till burnout. Moreover, the evolution of the mean particle diameter that decreases continuously with the combustion is estimated with the measured velocity information by the particles equation of motion.


Journal of Physics: Conference Series | 2009

Mode transition in bubbly Taylor-Couette flow measured by PTV

K Yoshida; Yuji Tasaka; Yuichi Murai; T Takeda

The drag acting to the inner cylinder in Taylor-Couette flow system can be reduced by bubble injection. In this research, relationship between drag reduction and change of vortical structure in a Taylor-Couette flow is investigated by Particle Tracking Velocimetry (PTV). The velocity vector field in the r-z cross section and the bubble concentration in the front view (z-θ plane) are measured. This paper describes the change of vortical structures with bubbles, and the mode transition that is sensitively affected by the bubbles is discussed. The bubbles accumulate in the three parts relative to vortex position by the interaction between bubbles and vortices. The status of bubbles distribution is different depending on position. This difference affects mode transition as its trigger significantly. The presence of bubbles affects the transition from toroidal mode to spiral mode but does not induce the transition from spiral mode to toroidal mode. Further we found that Taylor vortex bifurcates and a pair of vortices coalesces when the flow switches between spiral mode and toroidal mode.

Collaboration


Dive into the Yuji Tasaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takatoshi Yanagisawa

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuko Yamagishi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge