Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yujian He is active.

Publication


Featured researches published by Yujian He.


Talanta | 2009

Electrochemical determination of melamine using oligonucleotides modified gold electrodes

Qian Cao; Hong Zhao; Lixi Zeng; Jian Wang; Rui Wang; Xiaohui Qiu; Yujian He

A novel and simple electrochemical method for determination of melamine is developed based on oligonucleotides film modified gold electrodes. The electrochemical probe of ferricyanide was used to investigate the interactions between oligonucleotides and melamine. Results of cyclic voltammetries, differential pulse stripping voltammetries, electrochemical impedance spectrometry and atomic force microscope, proved that melamine might interact with oligonucleotides mainly through electrostatic and hydrogen-bonding interactions. The interactions between oligonucleotides and melamine lead to the increase in the peak currents of ferricyanide, which could be used for electrochemical sensing of melamine. The redox peak currents of ferricyanide were linear with the concentration of melamine in the range from 3.9x10(-8) to 3.3x10(-6)M with a linear coefficiency of 0.990. The detection limit was 9.6x10(-9)M. The proposed electrochemical biosensor is rapid, convenient and low-cost for effective sensing of melamine. Particularly, the proposed method was applied successfully to the determination of melamine in milk products, and the recovery was 95%.


Biosensors and Bioelectronics | 2010

Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe

Qian Cao; Hong Zhao; Yujian He; Xiangjun Li; Lixi Zeng; Nan Ding; Jian Wang; Jie Yang; Guangwei Wang

A colorimetric, label-free, and nonaggregation-based gold nanoparticles probe has been developed for the detection of melamine. Gold nanoparticles were generated using 3,5-dihydroxybenzoic acid as a reducer without adding gold nanoparticle seeds at room temperature. Upon the addition of melamine, the reducer 3,5-dihydroxybenzoic acid can interact with melamine through strong hydrogen-bonding interaction. Consequently, the formation of gold nanoparticles was interrupted by melamine since there was not enough reducer for the reduction of Au(3+) ion. And the color change from purple to yellowgreen with increasing melamine concentration was observed. The plasmon absorbance of the formed Au-NPs allows the quantitative detection of melamine. A sensitive linear correlation existed between the absorbance and the logarithm of melamine concentration ranging from 1x10(-9) M to 1x10(-5) M with a linear coefficiency of 0.993. The system has a high selectivity to melamine with a low detection limit of 8x10(-10) M.


Biosensors and Bioelectronics | 2011

The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites.

Ying Xue; Hong Zhao; Zhijiao Wu; Xiangjun Li; Yujian He; Zhuobin Yuan

In this paper, water soluble poly(diallyldimethylammonium chloride)-graphene nanosheets (PDDA-GNs) were synthesized and characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). On the basis of PDDA-GNs, three different types of gold nanoparticles/graphene nanosheets (AuNPs/GNs) hybrid nanocomposites were obtained by one-pot synthesis, in situ reduction and adsorption methods, respectively. These nanocomposites were used as electrode materials for electrochemical determination of uric acid (UA). The results indicated adsorption to be the best method to synthesize hybrid nanocomposites from the electrochemical point of view. Given the fact positively charged PDDA-AuNPs could interact with negatively charged UA molecules, we then synthesized PDDA-protected gold nanoparticles/graphene nanosheets (PDDA-AuNPs/GNs) hybrid nanocomposites by adsorption method, for the first time. As were expected, PDDA-AuNPs/GNs gave better performance for UA than AuNPs/GNs obtained by adsorption, and the anodic peak current of UA obtained by cyclic voltammetry (CV) increased 102.1-fold in comparison to bare GCE under optimizing conditions. Differential pulse voltammetry (DPV) was used to quantitatively determine UA. The linear range of UA was from 0.5μM to 20μM and the detection limit was 0.1μM (S/N=3) with a high sensitivity of 103.08μAμM(-1)cm(-2). The assay results of urine sample provided satisfying recoveries by standard addition method. In addition, the anodic peaks of adrenaline (AD) and UA were well resolved at PDDA-AuNPs/GNs modified electrode, while they were too overlapped to separate at bare electrode, as a result of that UA was successfully detected in the presence of AD. In conclusion, rapid synthesis of PDDA-AuNPs/GNs were realized and applied as an advanced hybrid electrode material for UA determination.


Biosensors and Bioelectronics | 2012

Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine.

Xiaofang Zhang; Hong Zhao; Ying Xue; Zhijiao Wu; Yang Zhang; Yujian He; Xiangjun Li; Zhuobin Yuan

A highly sensitive method for the detection of trace amount of clenbuterol based on gold nanoparticles (AuNPs) in the presence of melamine was described in this paper. Hydrogen-bonding interaction between clenbuterol and melamine resulted in the aggregation of AuNPs and a consequent color change of AuNPs from wine red to blue. The concentration of clenbuterol could be determined with naked eye or a UV-vis spectrometer. Results showed that the absorption ratio (A(670)/A(520)) was liner with the logarithm of clenbuterol concentration in the range of 2.8×10(-10) to 2.8×10(-7)M and 2.8×10(-7) to 1.4×10(-6)M with linear coefficients of 0.996 and 0.993, respectively. The detection limit was 2.8×10(-11)M (S/N=3), which was much lower than most existing methods. The coexisting substances including dl-epinephrine, phenylalamine, tryptohan, alamine, uric acid, glycine, glycerol, glucose, MgCl(2), CaCl(2) and NaCl did not affect the determination of clenbuterol. The proposed method could be successfully applied to the determination of clenbuterol in human urine.


Biosensors and Bioelectronics | 2011

Electrochemical immunosensor for casein based on gold nanoparticles and poly(L-Arginine)/multi-walled carbon nanotubes composite film functionalized interface.

Qian Cao; Hong Zhao; Yimin Yang; Yujian He; Nan Ding; Jian Wang; Zhijiao Wu; Kaixiang Xiang; Guangwei Wang

In this paper, a novel electrochemical immunosensor for the determination of casein based on gold nanoparticles and poly(L-Arginine)/multi-walled carbon nanotubes (P-L-Arg/MWCNTs) composite film was proposed. The P-L-Arg/MWCNTs composite film was used to modify glassy carbon electrode (GCE) to fabricate P-L-Arg/MWCNTs/GCE through electropolymerization of L-Arginine on MWCNTs/GCE. Gold nanoparticles were adsorbed on the modified electrode to immobilize the casein antibody and to construct the immunosensor. The stepwise assembly process of the immunosensor was characterized by cyclic voltammetry and differential pulse voltammetry. Results demonstrated that the peak currents of [Fe(CN)(6)](3-/4-) redox pair decreased due to the formation of antibody-antigen complex on the modified electrode. The optimization of the adsorption time of gold nanoparticles, the pH of supporting electrolyte and the incubation time were investigated in details. Under optimal conditions, the peak currents obtained by DPV decreased linearly with the increasing casein concentrations in the range from 1 × 10(-7) to 1 × 10(-5) g mL(-1) with a linear coefficiency of 0.993. This electrochemical immunoassay has a low detection limit of 5 × 10(-8) g mL(-1) and was successfully applied to the determination of casein in cheese samples.


Biosensors and Bioelectronics | 2011

Colorimetric detection of melamine during the formation of gold nanoparticles

Zhijiao Wu; Hong Zhao; Ying Xue; Qian Cao; Jie Yang; Yujian He; Xiangjun Li; Zhuobin Yuan

A sensitive and simple colorimetric method for determination of melamine was reported based on the seedless production of gold nanoparticles (Au-NPs). Au-NPs were synthesized by using pyrocatechol-3,5-disodiumsulfonate (PD) as reducer without adding nanoparticles seeds and stabilizing agent. PD can form intramolecular hydrogen-bonding in solution by adjacent sulfurnate and α-phenolic hydroxyl group, resulting in its weak reducing capacity and thus the synthesis of Au-NPs was slow. While in the presence of melamine, PD reacted with melamine through hydrogen-bonding. Therefore, the intramolecular hydrogen-bonding of PD was interrupted by melamine, and the α-phenolic hydroxyl group was free to reduce Au(3+), hence, the synthesis of Au-NPs was accelerated. Especially, the presence of melamine led to a shift in the surface plasmon bond and a color change of Au-NPs from green to yellow. Results showed that the absorbance ratio (A(436)/A(600)) was linear with the logarithm of melamine concentration in the range of 4.8×10(-9) to 1.6×10(-6) M with a correlation coefficient of 0.9949. The detection limit (3σ) obtained by UV-vis spectrum was 6.4×10(-10) M (i.e., 0.08 ppb). The proposed method was applied successfully to the determination of melamine in pretreated liquid milk products, and the recoveries were from 93% to 107%.


Journal of Materials Chemistry B | 2013

A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine

Ankang Yang; Ying Xue; Yang Zhang; Xiaofang Zhang; Hong Zhao; Xiangjun Li; Yujian He; Zhuobin Yuan

A novel one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites (GN/SnO2) was realized by using graphene oxide nanosheets (GONs) functionalized with sodium dodecyl sulfonate and SnCl2 as the starting materials. The morphology and structure of the synthesized SDS-GN/SnO2 nanocomposites were characterized by Raman spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction analysis. It was found that SnO2 nanoparticles were homogeneously distributed on the graphene nanosheets. The electrochemical behavior of dopamine (DA) at the SDS-GN/SnO2 nanoparticle modified electrode was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results showed that the modified electrode exhibited excellent electrocatalytic activity towards the electrochemical oxidation of DA. The separation of the oxidation peak potentials for ascorbic acid (AA)-DA, uric acid (UA)-DA and UA-AA obtained by DPV is about 132 mV, 128 mV and 260 mV, respectively, which allows selective and sensitive detection of DA in the presence of AA and UA. The anodic peak currents were linear with the concentration of DA in the range from 1.0 × 10-7 to 1.0 × 10-5 M with a coefficient of 0.9980. The detection limit was 80 nM (S/N = 3). The proposed method could be applied for the determination of DA in real human urine samples.


Talanta | 2012

Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe.

Ying Zhou; Hong Zhao; Chang Li; Peng He; Wenbo Peng; Longfei Yuan; Lixi Zeng; Yujian He

A facile, selective and highly sensitive method is proposed for colorimetric detection of manganese ions using 4-mercaptobenzoic acid (4-MBA) and melamine (MA) modified silver nanoparticles (AgNPs). The presence of Mn(2+) induces the aggregation of AgNPs through cooperative metal-ligand interaction, resulting in a color change from bright yellow to purple. The cofunctionalized AgNPs showed obvious advantages over the ones functionalized only by 4-MBA or MA in terms of selectivity. Mn(2+) could be monitored by colorimetric response of AgNPs by a UV-vis spectrophotometer or even naked eyes. The absorbance ratio (A(550 nm)/A(408 nm)) is linear with the concentration of Mn(2+) ranging from 5×10(-7) mol/L to 1×10(-5) mol/L with a correlation coefficient of 0.993, and the detection limit is as low as 5×10(-8) mol/L. Particularly, this cost-effective process also allowed rapid and simple determination of the Mn(2+) in drinking water.


Analytica Chimica Acta | 2010

Electrochemical sensing of melamine with 3,4-dihydroxyphenylacetic acid as recognition element

Qian Cao; Hong Zhao; Yujian He; Nan Ding; Jian Wang

A new electrochemical sensor for melamine with 3,4-dihydroxyphenylacetic acid as the recognition element is established. The results of Fourier Transform Infrared (FT-IR) spectra demonstrate that melamine may interact with 3,4-dihydroxyphenylacetic acid to form a complex mainly through the hydrogen-bonding interaction. The electrochemical behavior of 3,4-dihydroxyphenylacetic acid in the presence of melamine was studied. The anodic peak currents of 3,4-dihydroxyphenylacetic acid obtained by differential pulse voltammetry are linear with the logarithm of melamine concentrations in the range from 1.0 x 10(-8) to 5.0 x 10(-6) M with a linear coefficiency of 0.997. The detection limit is 3.0 x 10(-9) M. The proposed method displayed an excellent sensitivity and was successfully applied to the determination of melamine in milk products.


Talanta | 2013

Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe.

Ying Zhou; Peilong Wang; Xiaoou Su; Hong Zhao; Yujian He

A highly selective and sensitive method is developed for colorimetric detection of ractopamine and salbutamol using gold nanoparticles (AuNPs) functionalized with melamine (MA), respectively. The presence of these β-agonists induces the aggregation of gold nanoparticles through hydrogen-bonding interaction that was accompanied by a distinct change in color and optical properties, which could be monitored by a UV-vis spectrophotometer or even naked eyes. This process caused a significant decrease in the absorbance ratio (A670 nm/A520 nm) of melamine-gold nanoparticles (MA-AuNPs), and the color changed from wine red to blue. The systems exhibited a wide liner range, from 1×10(-10)M to 5×10(-7)mol/L with a correlation coefficient of 0.995 for ractopamine, and 1×10(-10)M to 1×10(-5)mol/L with a correlation coefficient of 0.996 for salbutamol, with measuring the absorbance ratio (A670 nm/A520 nm). The detection limit of these β-agonists is as low as 1×10(-11)mol/L. Particularly, the developed method has been applied to the analysis of real swine feed samples and has achieved satisfactory results.

Collaboration


Dive into the Yujian He's collaboration.

Top Co-Authors

Avatar

Hong Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangjun Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhuobin Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Zhou

Southwest Petroleum University

View shared research outputs
Top Co-Authors

Avatar

Zhijiao Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Xue

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qian Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lixi Zeng

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge