Yujie Cai
Guangdong Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yujie Cai.
Mediators of Inflammation | 2014
Yiming Shao; Jia Li; Yujie Cai; Yuliu Xie; Guoda Ma; You Li; Yanyan Chen; Gen Liu; Bin Zhao; Lili Cui; Keshen Li
MicroRNA-146a (miR-146a) acts as a pivotal regulatory molecule in immune response and various diseases, such as carcinoma and autoimmune diseases. Growing evidences have demonstrated the association of miR-146a gene single-nucleotide polymorphisms (SNPs) with risk of several diseases, but no genetic relevance studies of miR-146a gene polymorphisms to sepsis have been reported by now. Our study has analyzed the association of sepsis with two functional miR-146a gene SNPs rs2910164 G/C and rs57095329 A/G in a Chinese Han population (226 sepsis cases; 206 healthy controls). Our results indicated a higher prevalence of the miR-146a gene SNP rs2910164 C allele and CC genotype in patients with severe sepsis (rs2910164G versus rs2910164C: P = 0.0029, odds ratio (OR) = 1.664; GG+GC versus CC: P = 0.0045, OR = 1.947). Neither the genotype nor the allele in rs57095329 showed significant differences between the septic cases and the controls (P = 0.5901 and 0.3580, resp.), and no significant difference was observed in the subgroups. In addition, we confirmed that the two SNPs rs2910164 and rs57095329 could functionally affect the miR-146a expression levels and the reduction of miR146a was accompanied with the upregulation of the expression levels of TRAF-6 and IRAK-1 in severe sepsis patients. This present study might provide valuable clinical evidence that miR-146a gene polymorphism rs2910164 is associated with the risk of severe sepsis.
PLOS ONE | 2014
Lili Cui; You Li; Guoda Ma; Yan Wang; Yujie Cai; Shengyuan Liu; Yanyan Chen; Jia Li; Yuliu Xie; Gen Liu; Bin Zhao; Keshen Li
miR146a is well known for its regulatory role in the immune response and inflammation. Recent studies have demonstrated the links between miR146a and Alzheimer disease (AD) and suggested that miR146a may be involved in neuroinflammation and the metabolism of amyloid-β (Aβ), which are critical events in AD pathology. Although genetic studies have focused on the association between the miR146a gene and susceptibility to several diseases, no association study of miR146a variability with AD has been conducted. In this report, we performed a case-control association study to analyze the genotype and allele distributions of the miR146a, rs2910464 and rs57095329 polymorphisms in a Chinese population consisting of 292 AD cases and 300 healthy controls. We found a significant difference in the genotypes and allele frequencies of rs57095329 between the AD cases and the controls (p = 0.0147 and p = 0.0184, respectively), where the AA genotype of rs57095329 was associated with an increased risk of AD as well the cognitive decline in AD patients. Additionally, the AA genotype of rs57095329 exhibited significantly higher miR146a expression than the GG+GA genotypes of rs2910164 in the peripheral blood cells (PBMCs) of healthy individuals and had a stronger effect on the production of IL-6 and IL-1β when the cells were stimulated with LPS. Our data provide preliminary evidence that the rs57095329 polymorphism in the miR146a promoter is involved in the genetic susceptibility to AD, and this risk AA genotype may increase the expression of miR146a and influence certain proinflammatory cytokines, thus playing a role in the pathogenesis of AD.
Seizure-european Journal of Epilepsy | 2015
Lili Cui; Hua Tao; Yan Wang; Zhou Liu; Zhien Xu; Haihong Zhou; Yujie Cai; Lifen Yao; Beichu Chen; Wandong Liang; Yu Liu; Wanwen Cheng; Tingting Liu; Guoda Ma; You Li; Bin Zhao; Keshen Li
PURPOSE Epilepsy is the third most common chronic brain disorder and is characterized by an enduring predisposition for seizures. Recently, a growing body of evidence has suggested that microRNA-146a (miR-146a) is upregulated in the brains of epilepsy patients and of mouse models; furthermore, miR-146a may be involved in the development and progression of seizures through the regulation of inflammation and immune responses. In this report, we performed a case-control study to analyze the relationship between the two potentially functional single nucleotide polymorphisms (SNPs) of the miR-146a gene (rs2910464 and rs57095329) and the risk of epilepsy in a Chinese population comprising 249 cases and 249 healthy controls. METHOD Our study comprised 249 epilepsy patients and 249 healthy controls in two regions of China. The DNA was genotyped using the ABI PRISM SNapShot method. The statistical analysis was estimated using the chi-square test or Fishers exact test. RESULTS Our results indicated a significant association between the rs57095329 SNP of the miR-146a gene and the risk of drug resistant epilepsy (DRE) (genotypes, p = 0.0258 and alleles, p = 0.0108). Moreover, the rs57095329 A allele was found to be associated with a reduced risk of seizures frequency in DRE patients (all p < 0.001). However, the rs2910164 variant was not associated with epilepsy. CONCLUSION Our data indicate that the rs57095329 polymorphism in the promoter region of miR-146a is involved in the genetic susceptibility to DRE and the seizures frequency.
Critical Care | 2015
Lili Cui; Yan Gao; Yuliu Xie; Yan Wang; Yujie Cai; Xin Shao; Xiaotang Ma; You Li; Guoda Ma; Gen Liu; Wanwen Cheng; Yu Liu; Tingting Liu; Qunwen Pan; Hua Tao; Zhou Liu; Bin Zhao; Yiming Shao; Keshen Li
IntroductionAlthough genetic variants of the A disintegrin and metalloproteinase 10 (ADAM10) gene have been shown to be associated with susceptibility to several inflammatory-related diseases, to date little is known about the clinical relationship in the development of sepsis.MethodsTwo genetic variants in the promoter of ADAM10 were selected to analyze the potential association with the risk of sepsis. A total of 440 sepsis patients and 450 matched healthy individuals in two independent Chinese Han population were enrolled. Pyrosequencing and polymerase chain reaction-length polymorphism was used to determine the genotypes of the rs514049 and rs653765. A real-time qPCR method was used to detect the mRNA level of ADAM10. Enzyme-linked immunosorbent assay was used to measure the expression levels of substrates CX3CL1, interleukin (IL)-6R, tumor necrosis factor alpha (TNF-α), and the pro-inflammatory cytokines IL-1β and IL-6. Luciferase assay was used to analyze the activities of the promoter haplotypes of ADAM10.ResultsNo statistically significant differences between sepsis cases and controls in the genotype or allele frequencies were observed, suggesting that ADAM10 single nucleotide polymorphisms (SNPs) may not be risk factors for the occurrence of sepsis. A significant difference in the genotype and allele frequencies of the rs653765 SNP between patients with sepsis subtype and severe sepsis (P = 0.0014) or severe sepsis/sepsis shock (P = 0.0037) were observed. Moreover, the rs653765 CC genotype in severe sepsis showed a higher ADAM10 level compared to healthy groups, and the rs653765 CC polymorphism had a strong impact on the production of the ADAM10 substrates CX3CL1, IL-6R and TNF-α. Furthermore, the functional assay showed that ADAM10 C-A haplotype carriers exhibited significantly higher reporter activity compared with the T-A carriers and T-C carriers in human acute monocytic leukemia cell line.ConclusionsOur data initially indicated the ADAM10 rs653765 polymorphism was associated with the development of severe sepsis; the risk CC genotype could functionally affect the expression level of ADAM10 mRNA and was accompanied by the up-regulation of its substrates. Thus, ADAM10 might be clinically important and play a critical role in the pathogenesis of the development of sepsis, with potentially important therapeutic implications.
Mediators of Inflammation | 2017
Hua Tao; Jianghao Zhao; Tingting Liu; Yujie Cai; Xu Zhou; Huaijie Xing; Yan Wang; Mingkang Yin; Wangtao Zhong; Zhou Liu; Keshen Li; Bin Zhao; Haihong Zhou; Lili Cui
Unveiling the key mechanism of temporal lobe epilepsy (TLE) for the development of novel treatments is of increasing interest, and anti-inflammatory miR-146a is now considered a promising molecular target for TLE. In the current study, a C57BL/6 TLE mouse model was established using the lithium-pilocarpine protocol. The seizure degree was evaluated according to the Racine scale, and level 5 was considered the threshold for generalized convulsions. Animals were sacrificed to analyze the hippocampus at three time points (2 h and 4 and 8 weeks after pilocarpine administration to evaluate the acute, latent, and chronic phases, resp.). After intranasal delivery of miR-146a mimics (30 min before pilocarpine injection), the percent of animals with no induced seizures increased by 6.7%, the latency to generalized convulsions was extended, and seizure severity was reduced. Additionally, hippocampal damage was alleviated. While the relative miR-146a levels significantly increased, the expression of its target mRNAs (IRAK-1 and TRAF-6) and typical inflammatory modulators (NF-κB, TNF-α, IL-1β, and IL-6) decreased, supporting an anti-inflammatory role of miR-146a via the TLR pathway. This study is the first to demonstrate that intranasal delivery of miR-146a mimics can improve seizure onset and hippocampal damage in the acute phase of lithium-pilocarpine-induced seizures, which provides inflammation-based clues for the development of novel TLE treatments.
Cellular Physiology and Biochemistry | 2016
Yiming Shao; Junbing He; Feng Chen; Yujie Cai; Jianghao Zhao; Yao Lin; Zihan Yin; Hua Tao; Xin Shao; Pengru Huang; Mingkang Yin; Wenying Zhang; Zhou Liu; Lili Cui
Background: A disintegrin and metalloproteinase 17 (ADAM17) has been confirmed to play a significant role in the pathogenesis of sepsis. However, little is known about the clinical relevance of ADAM17 polymorphisms to sepsis onset and development. Methods: This study analyzed the associations of five ADAM17 promoter polymorphisms (rs55790676, rs12692386, rs11684747, rs1524668 and rs11689958) with sepsis (370 sepsis cases and 400 controls). Genotyping was performed using pyrosequencing and polymerase chain reaction-length polymorphism method. The ADAM17 expression was measured using the real-time PCR method and the concentrations of related cytokines were detected using enzyme-linked immunosorbent assay. Results: No associations were observed between these polymorphisms and sepsis susceptibility, while the rs12692386GA/GG genotypes were overrepresented among the patients with severe sepsis (P=0.002) or septic shock (P=0.0147) compared to those with sepsis subtype, suggesting a susceptible role of rs12692386A>G in the progression of sepsis. Moreover, ADAM17 expression was increased in the sepsis patients with the rs12692386GA/GG genotypes, accompanied by up-regulation of expression of the ADAM17 substrates (TNF-α, IL-6R and CX3CL1) and pro-inflammatory cytokines (IL-1β and IL-6). Conclusion: The present study has provided potentially valuable clinical evidence that the ADAM17 rs12692386 polymorphism is a functional variant that might be used as a relevant risk estimate for the progression of sepsis.
Molecular Neurobiology | 2017
Lili Cui; Yujie Cai; Wanwen Cheng; Gen Liu; Jianghao Zhao; Hao Cao; Hua Tao; Yan Wang; Mingkang Yin; Tingting Liu; Yu Liu; Pengru Huang; Zhou Liu; Keshen Li; Bin Zhao
The treatment of AD is a topic that has puzzled researchers for many years. Current mainstream theories still consider Aβ to be the most important target for the cure of AD. In this study, we attempted to explore multiple targets for AD treatments with the aim of identifying a qualified compound that could both inhibit the aggregation of Aβ and block the RAGE/Aβ axis. We believed that a compound that targets both Aβ and RAGE may be a feasible strategy for AD treatment. A novel and small natural compound, Matrine (Mat), was identified by high-throughput screening of the main components of traditional Chinese herbs used to treat dementia. Various experimental techniques were used to evaluate the effect of Mat on these two targets both in vitro and in AD mouse model. Mat could inhibit Aβ42-induced cytotoxicity and suppress the Aβ/RAGE signaling pathway in vitro. Additionally, the results of in vivo evaluations of the effects of Mat on the two targets were consistent with the results of our in vitro studies. Furthermore, Mat reduced proinflammatory cytokines and Aβ deposition and attenuated the memory deficits of AD transgenic mice. We believe that this novel, multi-target strategy to inhibit both Aβ and RAGE, is worthy of further exploration. Therefore, our future studies will focus on identifying even more effective multi-target compounds for the treatment of AD based on the molecular structure of Mat.
Scientific Reports | 2017
Yiming Shao; Feng Chen; Yuhua Chen; Wenying Zhang; Yao Lin; Yujie Cai; Zihan Yin; Shoubao Tao; Qinghui Liao; Jianghao Zhao; Hui Mai; Yanfang He; Junbing He; Lili Cui
Previous studies demonstrated significant roles of autophagy in the pathogenesis of sepsis, but few studies focused on the effect of autophagy-related SNPs on sepsis susceptibility. In this present study, five polymorphisms of ATG5/ATG16L1 were investigated for the possible risk on sepsis in a Chinese Han population. Our results showed that ATG5 expression levels decreased with the severity of sepsis, and rs506027 T > C and rs510432 G > A were associated with sepsis progression and mortality. Moreover, the rs506027 TT and rs510432 GG carriers also exhibited increased expression levels of ATG5. Functional assays showed that ATG5 knockdown elevated the secretion of pro-inflammatory cytokines in THP-1 cells, and the extracted mononuclear cell of the risk C-A carriers exhibited decreased ATG5 expression levels, leading to enhanced releases of TNF-α and IL-1β under LPS stimulation in vitro. Furthermore, ATG5 T-G haplotype mutation showed higher promoter activities compared to C-A haplotype mutation, suggesting the effect of these SNPs on ATG5 gene transcription. Taken together, these results above indicated that these two ATG5 promoter polymorphisms may be functional and clinically significant for sepsis progression, underscoring its potentially therapeutic implications for sepsis and other inflammatory diseases.
PLOS ONE | 2017
Junbing He; Yuhua Chen; Yao Lin; Wenying Zhang; Yujie Cai; Feng Chen; Qinghui Liao; Zihan Yin; Yan Wang; Shoubao Tao; Xiaoli Lin; Pengru Huang; Lili Cui; Yiming Shao; Paul Proost
Previous studies have indicated that the monocyte chemo-attractant protein 1 (MCP-1), also referred to as C-C motif chemokine ligand 2 (CCL2), plays a significant role in the pathogenesis of sepsis, and this study investigated the clinical relevance of two MCP-1 gene polymorphisms on sepsis onset and progression. The Multiplex SNaPshot genotyping method was used to detect MCP-1 gene polymorphisms in the Chinese Han population (403 sepsis patients and 400 controls). MCP-1 mRNA expression levels were measured using real-time quantitative PCR, and enzyme-linked immunosorbent assays were used to analyze MCP-1, tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and interleukin-1 beta (IL-1β) plasma concentrations. The rs1024611 polymorphism analysis showed lower frequencies of minor homozygous genotype (AA) and allele (A) in sepsis patients compared to the healthy controls (19.4% vs. 31.5%, P = 0.0001 and 45.9% vs. 54.8%, P = 0.0004, respectively). And the frequencies of GG genotype and G allele were lower in sepsis patients compared to the controls (19.6% vs. 31.3%, P = 0.0002 and 46.0% vs. 54.5%, P = 0.0007, respectively). The rs1024611 AG/GG and rs2857656 GC/CC genotypes were both overrepresented in patients with severe sepsis (both P = 0.0005) and septic shock (P = 0.010 and P = 0.015, respectively) compared to the patients with mild sepsis. Moreover, among sepsis patients, the rs1024611 AG/GG and rs2857656 GC/CC carriers exhibited significant increases in expression levels of MCP-1 (P = 0.025), TNF-α (P = 0.034) and IL-6 (P = 0.043) compared with the rs1024611 AA or rs2857656 GG carriers. This study provides valuable clinical evidence that the MCP-1/CCL2 polymorphisms rs1024611 and rs2857656 are associated with sepsis susceptibility and development. We conclude that MCP-1/CCL2 plays a significant role in the pathogenesis of sepsis, which has potentially important therapeutic implications.
Clinical Genetics | 2017
Yiming Shao; Xin Shao; Junbing He; Yujie Cai; Jianghao Zhao; Feng Chen; Hua Tao; Zihan Yin; Xinzhang Tan; Yanfang He; Yao Lin; Keshen Li; Lili Cui
Receptor for advanced glycation end products (RAGE) is considered a major pattern recognition receptor, which plays an important role in the development of sepsis. Increasing evidence showed an association between RAGE polymorphisms and the susceptibility to several inflammatory‐related diseases. However, little is known about the clinical relationship between RAGE polymorphisms and sepsis. In this study, we analyzed the association of sepsis with three functional RAGE gene polymorphisms (rs1800624, rs1800625 and rs2070600) in a Chinese Han population (372 sepsis cases and 400 healthy controls). Significant differences were observed in the rs1800624 and rs1800625 genotype/allele distributions between the sepsis and controls, but no significant difference was observed in the rs2070600 genotype/allele. Moreover, our results also revealed a significant difference in the genotype/allele frequencies of the rs1800624 and rs1800625 polymorphisms between the sepsis and severe sepsis subtypes, the rs1800624 TT or rs1800625 TT genotype carriers exhibited a significant increase in RAGE mRNA, sRAGE, TNF‐α and IL‐6 expression compared with the rs1800624 AT/AA or rs1800625 CT/CC carriers in sepsis patients. Overall, this study might provide valuable clinical evidence between the RAGE gene polymorphisms and the risk or the development of sepsis.