Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yujie Wei is active.

Publication


Featured researches published by Yujie Wei.


Nature Materials | 2012

The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene

Yujie Wei; Jiangtao Wu; Hanqing Yin; Xinghua Shi; Ronggui Yang; Mildred S. Dresselhaus

The two-dimensional crystalline structures in graphene challenge the applicability of existing theories that have been used for characterizing its three-dimensional counterparts. It is crucial to establish reliable structure-property relationships in the important two-dimensional crystals to fully use their remarkable properties. With the success in synthesizing large-area polycrystalline graphene, understanding how grain boundaries (GBs) in graphene alter its physical properties is of both scientific and technological importance. A recent work showed that more GB defects could counter intuitively give rise to higher strength in tilt GBs (ref. 10). We show here that GB strength can either increase or decrease with the tilt, and the behaviour can be explained well by continuum mechanics. It is not just the density of defects that affects the mechanical properties, but the detailed arrangements of defects are also important. The strengths of tilt GBs increase as the square of the tilt angles if pentagon-heptagon defects are evenly spaced, and the trend breaks down in other cases. We find that mechanical failure always starts from the bond shared by hexagon-heptagon rings. Our present work provides fundamental guidance towards understanding how defects interact in two-dimensional crystals, which is important for using high-strength and stretchable graphene for biological and electronic applications.


Nano Letters | 2013

Bending rigidity and Gaussian bending stiffness of single-layered graphene

Yujie Wei; Baoling Wang; Jiangtao Wu; Ronggui Yang; Martin L. Dunn

Bending rigidity and Gaussian bending stiffness are the two key parameters that govern the rippling of suspended graphene-an unavoidable phenomenon of two-dimensional materials when subject to a thermal or mechanical field. A reliable determination about these two parameters is of significance for both the design and the manipulation of graphene morphology for engineering applications. By combining the density functional theory calculations of energies of fullerenes and single wall carbon nanotubes with the configurational energy of membranes determined by Helfrich Hamiltonian, we have designed a theoretical approach to accurately determine the bending rigidity and Gaussian bending stiffness of single-layered graphene. The bending rigidity and Gaussian bending stiffness of single-layered graphene are 1.44 eV (2.31 × 10(-19) N m) and -1.52 eV (2.43 × 10(-19) N m), respectively. The bending rigidity is close to the experimental result. Interestingly, the bending stiffness of graphene is close to that of lipid bilayers of cells about 1-2 eV, which might mechanically justify biological applications of graphene.


Materials research letters | 2013

Mechanics and Mechanically Tunable Band Gap in Single-Layer Hexagonal Boron-Nitride

Jiangtao Wu; Baolin Wang; Yujie Wei; Ronggui Yang; Mildred S. Dresselhaus

Current interest in two-dimensional materials extends from graphene to others systems like single-layer hexagonal boron-nitride (h-BN), for the possibility of making heterogeneous structures to achieve exceptional properties that cannot be realized in graphene.The electrically insulating h-BN and semi-metal graphene may open good opportunities to realize a semiconductor by manipulating the morphology and composition of such heterogeneous structures.Here we report the mechanical properties of h-BN and its band structures tuned by mechanical straining by using the density functional theory calculations.The elastic properties, both the Youngs modulus and bending rigidity for h-BN, are isotropic.We reveal that there is a bi-linear dependence of band gap on the applied tensile strains in h-BN. Mechanical strain can tune single-layer h-BN from an insulator to a semiconductor, with a band gap in the 4.7eV to 1.5eV range.Current interest in two-dimensional materials extends from graphene to others systems such as single-layer hexagonal boron-nitride (h-BN), for the possibility of making heterogeneous structures. Here, we report mechanical properties of h-BN and its band structures tuned by straining by using the density functional theory calculations. Youngs modulus and bending rigidity for h-BN are isotropic; its failure strength and failure strain show strong anisotropy. A small fraction of antisite defects in h-BN can largely decrease its mechanical properties. We reveal that strain can tune single-layer h-BN from an insulator to a semiconductor.


Applied Physics Letters | 2014

Stable planar single-layer hexagonal silicene under tensile strain and its anomalous Poisson's ratio

Baolin Wang; Jiangtao Wu; Xiaokun Gu; Hanqing Yin; Yujie Wei; Ronggui Yang; Mildred S. Dresselhaus

Here, we report the structural and mechanical properties of several two-dimensional (2-D) materials by using first-principles density functional theory calculations. We find that the buckled single-layer silicene could transit to planar hexagonal silicene at a critical tensile strain of 0.20. Phonon dispersion analysis suggests that the planar hexagonal silicene under tension is stable. The Poissons ratio of silicene and MoS2 shows strong anisotropy: it increases while stretched in the zigzag direction, but decreases when strained in the armchair direction. When stretched in the zigzag direction, the Poissons ratio of silicene could reach 0.62.


Nano Letters | 2017

Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity

Zhenqian Pang; Xiaokun Gu; Yujie Wei; Ronggui Yang; Mildred S. Dresselhaus

Low-dimensional carbon allotropes, from fullerenes, carbon nanotubes, to graphene, have been broadly explored due to their outstanding and special properties. However, there exist significant challenges in retaining such properties of basic building blocks when scaling them up to three-dimensional materials and structures for many technological applications. Here we show theoretically the atomistic structure of a stable three-dimensional carbon honeycomb (C-honeycomb) structure with superb mechanical and thermal properties. A combination of sp2 bonding in the wall and sp3 bonding in the triple junction of C-honeycomb is the key to retain the stability of C-honeycomb. The specific strength could be the best in structural carbon materials, and this strength remains at a high level but tunable with different cell sizes. C-honeycomb is also found to have a very high thermal conductivity, for example, >100 W/mK along the axis of the hexagonal cell with a density only ∼0.4 g/cm3. Because of the low density and high thermal conductivity, the specific thermal conductivity of C-honeycombs is larger than most engineering materials, including metals and high thermal conductivity semiconductors, as well as lightweight CNT arrays and graphene-based nanocomposites. Such high specific strength, high thermal conductivity, and anomalous Poissons effect in C-honeycomb render it appealing for the use in various engineering practices.


Scientific Reports | 2016

Strength gradient enhances fatigue resistance of steels

Zhiwei Ma; Jiabin Liu; Gang Wang; Hongtao Wang; Yujie Wei; Huajian Gao

Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.


Journal of Applied Mechanics | 2016

Extraction of Anisotropic Mechanical Properties From Nanoindentation of SiC-6H Single Crystals

Amit Datye; Lin Li; Wei Zhang; Yujie Wei; Yanfei Gao; G.M. Pharr

Because brittle solids fail catastrophically during normal tension and compression testing, nanoindentation is often a useful alternative technique for measuring their mechanical properties and assessing their deformation characteristics. One practical question to be addressed in such studies is the relationship between the anisotropy in the uniaxial mechanical behavior to that in the indentation response. To this end, a systematic study of the mechanical behavior the 6H polytype of a hexagonal silicon carbide single crystal (SiC-6H) was performed using standard nanoindentation methods. The indentation elastic modulus and hardness measured using a Berkovich indenter at a peak load of 500 mN varied over a wide range of crystal orientation by only a few percent. The variation in modulus is shown to be consistent with an anisotropic elastic contact analysis based on the known single crystal elastic constants of the material. The variation in hardness is examined using a single crystal plasticity model that considers the anisotropy of slip in hexagonal crystals. When compared to experimental measurements, the analysis confirms that plasticity in SiC-6H is dominated by basal slip. An anisotropic elastic contact analysis provides insights into the relationship between the pop-in load, which characterizes the transition from elasticity to plasticity during nanoindentation testing, and the theoretical strength of the material. The observations and analyses lay the foundations for further examination of the deformation and failure mechanisms in anisotropic materials by nanoindentation techniques.


EPL | 2016

Super-stretchable borophene

Zhenqian Pang; Xin Qian; Yujie Wei; Ronggui Yang

Recent success in the synthesis of the two-dimensional borophene on silver substrates has attracted strong interest in exploring its extraordinary properties for potential technological applications. The single-layer borophene has a buckled structure with atomic ridges. By using the first-principles density functional theory calculations, we show that the two-dimensional borophene is highly stretchable with strong anisotropy The strain-to-failure in the direction along the atomic ridges is nearly twice as large as that across the atomic ridges. The straining-induced flattening and the subsequent stretch of the flat borophene are accounted for the large strain-to-failure for tension along the atomic ridges. We also investigated the mechanics of monolayer borophene under biaxial tension and we found that the biaxial tension increases the strength across the atomic ridges but decreases the failure strain along the atomic ridges. Furthermore, when the bilayer borophene is stretched along the cross-plane direction, the strength and failure strain of the bilalyer borophene are much higher than those of the bilayer graphene due to the very strong inter-layer chemical bonding.


Acta Mechanica Sinica | 2012

Tunable band structures of polycrystalline graphene by external and mismatch strains

Jiang-Tao Wu; Xinghua Shi; Yujie Wei

Lacking a band gap largely limits the application of graphene in electronic devices. Previous study shows that grain boundaries (GBs) in polycrystalline graphene can dramatically alter the electrical properties of graphene. Here, we investigate the band structure of polycrystalline graphene tuned by externally imposed strains and intrinsic mismatch strains at the GB by density functional theory (DFT) calculations. We found that graphene with symmetrical GBs typically has zero band gap even with large uniaxial and biaxial strain. However, some particular asymmetrical GBs can open a band gap in graphene and their band structures can be substantially tuned by external strains. A maximum band gap about 0.19 eV was observed in matched-armchair GB (5, 5) | (3, 7) with a misorientation of θ = 13° when the applied uniaxial strain increases to 9%. Although mismatch strain is inevitable in asymmetrical GBs, it has a small influence on the band gap of polycrystalline graphene.


Scientific Reports | 2016

Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

Jiabin Liu; Yongbin Jin; Xiaoyang Fang; Chenxu Chen; Qiong Feng; Xiaowei Liu; Y.Z. Chen; Tao Suo; Feng Zhao; Tianlin Huang; Hongtao Wang; Xi Wang; Youtong Fang; Yujie Wei; L. Meng; Jian Lu; Wei Yang

Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

Collaboration


Dive into the Yujie Wei's collaboration.

Top Co-Authors

Avatar

Ronggui Yang

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenqian Pang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaokun Gu

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Wei Yang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiangtao Wu

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mildred S. Dresselhaus

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xi Wang

Beijing Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Xinghua Shi

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge