Yuk Yin Li
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuk Yin Li.
International Journal of Cancer | 2009
Bin Li; Sai Wah Tsao; Yuk Yin Li; Xianghong Wang; Ming-Tat Ling; Yong Chuan Wong; Qing-Yu He; Annie L.M. Cheung
Id‐1 (inhibitor of differentiation or DNA binding) is a helix‐loop‐helix protein that is overexpressed in many types of cancer including esophageal squamous cell carcinoma (ESCC). We previously reported that ectopic Id‐1 expression activates the phosphatidylinositol‐3‐kinase (PI3K)/protein kinase B (AKT) signaling pathway in human esophageal cancer cells. In this study, we confirmed a positive correlation between Id‐1 and phospho‐AKT (Ser473) expressions in ESCC cell lines, as well as in ESCC on a tissue microarray. To investigate the significance of Id‐1 in esophageal cancer progression, ESCC cells with stable ectopic Id‐1 expression were inoculated subcutaneously into the flank of nude mice and were found to form larger tumors that showed elevated Ki‐67 proliferation index and increased angiogenesis, as well as reduced apoptosis, compared with control cells expressing the empty vector.The Id‐1‐overexpressing cells also exhibited enhanced metastatic potential in the experimental metastasis assay. Treatment with the PI3K inhibitor LY294002 attenuated the tumor promotion effects of Id‐1, indicating that the effects were mediated by the PI3K/AKT signaling pathway. In addition, our in vitro experiments showed that ectopic Id‐1 expression altered the expression levels of markers associated with epithelial–mesenchymal transition and enhanced the migration ability of esophageal cancer cells. The Id‐1‐overexpressing ESCC cells also exhibited increased invasive potential, which was in part due to PI3K/AKT‐dependent modulation of matrix metalloproteinase‐9 expression. In conclusion, our results provide the first evidence that Id‐1 promotes tumorigenicity and metastasis of human esophageal cancer in vivo and that the PI3K inhibitor LY294002 can attenuate these effects.
Molecular Cancer Therapeutics | 2009
Bin Li; Yuk Yin Li; Sai Wah Tsao; Annie L.M. Cheung
Esophageal cancer is the eighth most common malignancy, and one of the leading causes of cancer-related deaths worldwide. The overall 5-year survival rate of patients with esophageal cancer remains low at 10% to 40% due to late diagnosis, metastasis, and resistance of the tumor to radiotherapy and chemotherapy. NF-κB is involved in the regulation of cell growth, survival, and motility, but little is known about the role of this signaling pathway in the tumorigenesis of human esophageal squamous cell carcinoma (ESCC), the most common form of esophageal cancer. This study aims to explore the functions of NF-κB in human ESCC progression and to determine whether targeting the NF-κB signaling pathway might be of therapeutic value against ESCC. Our results from human ESCC cell lines and ESCC tissue indicated that NF-κB is constitutively active in ESCC. Exposure of ESCC cells to two NF-κB inhibitors, Bay11-7082 and sulfasalazine, not only reduced cancer cell proliferation, but also induced apoptosis and enhanced sensitivity to chemotherapeutic drugs, 5-fluorouracil, and cisplatin. In addition, Bay11-7082 and sulfasalazine suppressed the migration and invasive potential of ESCC cells. More importantly, the results from tumor xenograft and experimental metastasis models showed that Bay11-7082 had significant antitumor effects on ESCC xenografts in nude mice by promoting apoptosis, and inhibiting proliferation and angiogenesis, as well as reduced the metastasis of ESCC cells to the lungs without significant toxic effects. In summary, our data suggest that NF-κB inhibitors may be potentially useful as therapeutic agents for patients with esophageal cancer. [Mol Cancer Ther 2009;8(9):2635–44]
Clinical Cancer Research | 2014
Bin Li; Sai Wah Tsao; Kwok Wah Chan; Dale L. Ludwig; Ruslan Novosyadlyy; Yuk Yin Li; Qing-Yu He; Annie L.M. Cheung
Purpose: To investigate the autocrine/endocrine role of Id1-induced insulin-like growth factor-II (IGF-II) in esophageal cancer, and evaluate the potential of IGF-II- and IGF-type I receptor (IGF-IR)-targeted therapies. Experimental Design: Antibody array-based screening was used to identify differentially secreted growth factors from Id1-overexpressing esophageal cancer cells. In vitro and in vivo assays were performed to confirm the induction of IGF-II by Id1, and to study the autocrine and endocrine effects of IGF-II in promoting esophageal cancer progression. Human esophageal cancer tissue microarray was analyzed for overexpression of IGF-II and its correlation with that of Id1 and phosphorylated AKT (p-AKT). The efficacy of intratumorally injected IGF-II antibody and intraperitoneally injected cixutumumab (fully human monoclonal IGF-IR antibody) was evaluated using in vivo tumor xenograft and experimental metastasis models. Results: Id1 overexpression induced IGF-II secretion, which promoted cancer cell proliferation, survival, and invasion by activating AKT in an autocrine manner. Overexpression of IGF-II was found in 21 of 35 (60%) esophageal cancer tissues and was associated with upregulation of Id1 and p-AKT. IGF-II secreted by Id1-overexpressing esophageal cancer xenograft could instigate the growth of distant esophageal tumors, as well as promote metastasis of circulating cancer cells. Targeting IGF-II and IGF-IR had significant suppressive effects on tumor growth and metastasis in mice. Cixutumumab treatment enhanced the chemosensitivity of tumor xenografts to fluorouracil and cisplatin. Conclusions: The Id1–IGF-II–IGF-IR–AKT signaling cascade plays an important role in esophageal cancer progression. Blockade of IGF-II/IGF-IR signaling has therapeutic potential in the management of esophageal cancer. Clin Cancer Res; 20(10); 2651–62. ©2014 AACR.
Biomaterials | 2013
Minting Yuan; Chiu Wai Yeung; Yuk Yin Li; Huajia Diao; Kenneth Mc Cheung; Danny Chan; Kathryn S. E. Cheah; Pui Barbara Chan
Recent attempts to treat disc degeneration with mesenchymal stem cells (MSCs) showed encouraging results. Differentiating MSCs towards nucleus pulposus cell (NPC)-like lineages represents a speculative mechanism. Niche factors including hypoxia, growth factors and cell-cell interactions have been suggested but the matrix niche factor has not been studied. Our collagen microencapsulation provides a 3D model to study matrix niche as it enables the encapsulated cells to remodel the template matrix. We previously demonstrated the chondro-inductive role of of chondrocytes-derived matrix in MSCs and showed that NPCs maintained their phenotype and remodeled the template matrix of collagen microspheres into a glycosaminoglycan (GAG)-rich one. Here we aim to study the effects of NPC-derived matrix on MSC differentiation towards NPC-like lineages by firstly producing an NPC-derived matrix in collagen microspheres, secondly optimizing a decellularization protocol to discard NPCs yet retaining the matrix, thirdly repopulating the acellular NPC-derived matrix with MSCs and fourthly evaluating their phenotype. Finally, we injected these microspheres in a pilot rabbit disc degeneration model. Results showed that NPCs survived, maintained their phenotypic markers and produced GAGs. A decellularization protocol with maximal removal of the NPCs, minimal loss in major matrix components and partial retention of NPC-specific markers was identified. The resulting acellular matrix supported MSC survival and matrix production, and up-regulated the gene expression of NPC markers including type II collagen and glypican 3. Finally, injection of MSC in these microspheres in rabbit degenerative disc better maintained hydration level with more pronounced staining of GAGs and type II collagen than controls.
Biomaterials | 2015
Yuk Yin Li; Tze Hang Choy; Fu Chak Ho; Pui Barbara Chan
The stem cell niche, or microenvironment, consists of soluble, matrix, cell and mechanical factors that together determine the cellular fates and/or differentiation patterns of stem cells. Collagen and glycosaminoglycans (GAGs) are important scaffolding materials that can mimic the natural matrix niche. Here, we hypothesize that imposing changes in the scaffold composition or, more specifically, incorporating GAGs into the collagen meshwork, will affect the morphology, cytoskeletal organization and integrin expression profiles, and hence the fate of human mesenchymal stem cells (MSCs) upon the induction of differentiation. Using chondrogenesis as an example, we microencapsulated MSCs in three scaffold systems that had varying matrix compositions: collagen alone (C), aminated collagen (AC) and aminated collagen with GAGs (ACG). We then induced the MSCs to differentiate toward a chondrogenic lineage, after which, we characterized the cell viability and morphology, as well as the level of cytoskeletal organization and the integrin expression profile. We also studied the fate of the MSCs by evaluating the major chondrogenic markers at both the gene and protein level. In C, MSC chondrogenesis was successfully induced and MSCs that spread in the scaffolds had a clear actin cytoskeleton; they expressed integrin α2β1, α5 and αv; promoted sox9 nuclear localization transcription activation; and upregulated the expression of chondrogenic matrix markers. In AC, MSC chondrogenesis was completely inhibited but the scaffold still supported cell survival. The MSCs did not spread and they had no actin cytoskeleton; did not express integrin α2 or αv; they failed to differentiate into chondrogenic lineage cells even on chemical induction; and there was little colocalization or functional interaction between integrin α5 and fibronectin. In ACG, although the MSCs did not express integrin α2, they did express integrin αv and there was strong co-localization and hence functional binding between αv and fibronectin. In addition, vimentin was the dominant cytoskeletal protein in these cells, and the chondrogenic marker genes were expressed but at a much lower level than in the MSCs encapsulated in C alone. This work suggests the importance of controlling the matrix composition as a strategy to manipulate cell-matrix interactions (through changes in the integrin expression profile and cytoskeleton organization), and hence stem cell fates.
Clinical Cancer Research | 2016
Bin Li; Wen Wen Xu; Xin Yuan Guan; Yan Ru Qin; Simon Law; Nikki P. Lee; Kin Tak Chan; Pui Ying Tam; Yuk Yin Li; Kwok Wah Chan; Hiu Fung Yuen; Sai Wah Tsao; Qing-Yu He; Annie L.M. Cheung
Purpose: Chemoresistance is a major obstacle in cancer therapy. We found that fluorouracil (5-FU)-resistant esophageal squamous cell carcinoma cell lines, established through exposure to increasing concentrations of 5-FU, showed upregulation of Id1, IGF2, and E2F1. We hypothesized that these genes may play an important role in cancer chemoresistance. Experimental Design: In vitro and in vivo functional assays were performed to study the effects of Id1–E2F1–IGF2 signaling in chemoresistance. Quantitative real-time PCR, Western blotting, immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays were used to investigate the molecular mechanisms by which Id1 regulates E2F1 and by which E2F1 regulates IGF2. Clinical specimens, tumor tissue microarray, and Gene Expression Omnibus datasets were used to analyze the correlations between gene expressions and the relationships between expression profiles and patient survival outcomes. Results: Id1 conferred 5-FU chemoresistance through E2F1-dependent induction of thymidylate synthase expression in esophageal cancer cells and tumor xenografts. Mechanistically, Id1 protects E2F1 protein from degradation and increases its expression by binding competitively to Cdc20, whereas E2F1 mediates Id1-induced upregulation of IGF2 by binding directly to the IGF2 promoter and activating its transcription. The expression level of E2F1 was positively correlated with that of Id1 and IGF2 in human cancers. More importantly, concurrent high expression of Id1 and IGF2 was associated with unfavorable patient survival in multiple cancer types. Conclusions: Our findings define an intricate E2F1-dependent mechanism by which Id1 increases thymidylate synthase and IGF2 expressions to promote cancer chemoresistance. The Id1–E2F1–IGF2 regulatory axis has important implications for cancer prognosis and treatment. Clin Cancer Res; 22(5); 1243–55. ©2015 AACR.
Advanced Healthcare Materials | 2015
Tsz Kit Chik; Wai Hon Chooi; Yuk Yin Li; Fu Chak Ho; Hiu Wa Cheng; Tsz Hang Choy; K. Y. Sze; Keith K.D. Luk; Kenneth Man Chi Cheung; Bp Chan
Intervertebral disc degeneration is an important clinical problem but existing treatments have significant drawbacks. The ability to bioengineer the entire spinal motion segment (SMS) offers hope for better motion preservation strategies but is extremely challenging. Here, fabrication of a multicomponent SMS construct with complex hierarchical organization from mesenchymal stem cells and collagen-based biomaterials, using a module-based integrative approach, is reported. The construct consists of two osteochondral subunits, a nucleus pulposus (NP-)-like core and a multi-lamellae annulus fibrosus (AF-)-like component. Chondrogenic medium is crucial for stabilizing the osteochondral subunits, which are shown to allow passive nutrient diffusion, while cyclic compression is necessary for better fiber matrix organization. Cells adhere, survive, and interact with the NP-like core. Cyclic torsional loading stimulates cell alignment in the AF-like lamellae and the number of lamellae affects the mechanical properties of the construct. This work represents an important milestone in SMS tissue engineering and provides a 3D model for studying tissue maturation and functional remodeling.
Acta Biomaterialia | 2013
Tsz Kit Chik; X.Y. Ma; Tsz Hang Choy; Yuk Yin Li; H.J. Diao; W.K. Teng; S.J. Han; Kenneth Man Chee Cheung; Bp Chan
Intra-disc injection of mesenchymal stem cells (MSCs) to treat disc degeneration may lead to unfavorable complications, particularly osteophyte formation. Development of an effective method to block the injection portal, prevent the leakage of injected cells and materials and, hence, prevent osteophyte formation is of the utmost importance before MSC-based therapies can be applied in a clinical setting. Here we seek to alleviate the cell leakage problem and the associated complication osteophyte formation by developing an injectable annulus plug to block the injection portal during intra-disc delivery. Specifically, we fabricated a needle-shaped collagen plug by photochemical crosslinking and successfully delivered it intra-discally, in association with MSCs in collagen microsphere carriers, using a custom-made delivery device. The mechanical performance of the plug and its effectiveness in reducing cell leakage were evaluated ex vivo under compression and in torsion push-out tests. The results demonstrate that the plug survived physiologically relevant loadings and significantly reduced leakage and enhanced retention of the injected materials. Finally, a pilot in vivo study in rabbits was conducted to evaluate the performance of the plug. Microcomputed tomography imaging and histology revealed that the plug significantly reduced osteophyte formation. This work suggests the potential of the annulus plug as an adjunct or annulus closure device for intra-disc delivery of cells and materials.
Biomaterials | 2015
Fu Chak Ho; Wei Zhang; Yuk Yin Li; Bp Chan
Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell-matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell-matrix interaction and mechanoregulation studies.
Regulatory Peptides | 2006
Isabel S.S. Hwang; Fai Tang; Pauline P. Leung; Yuk Yin Li; Sheung Tat Fan; John M. Luk
This study was undertaken to determine AM expression in carbon tetrachloride (CCl4)-induced liver cirrhosis developed with peritoneal ascites. Sprague-Dawley rats received subcutaneous injections of CCl4 twice weekly in olive oil (1:1, 0.3 ml per kg body weight) for 6 or 12 weeks until ascites developed, or saline in olive oil as control. At 6 weeks, fibrosis developed and at 12 weeks cirrhosis developed with ascites formation. At both 6 and 12 weeks, increases in plasma renin and AM were evident, as was the gene expression of AM. At 12 weeks after CCl4 injection, the gene expression of calcitonin-like-receptor (CRLR) and receptor activity modifying proteins (RAMP1, RAMP2 and RAMP3) were all elevated when compared to the control. The results suggest that liver cirrhosis increases mRNA expressions of AM, CRLR and RAMP1, RAMP2 and RAMP3 and that the increase in AM gene expression precedes the development of cirrhosis. The increase in AM synthesis as reflected by an increase in AM gene expression, together with a lack of increase in AM peptide at both 6 and 12 weeks may suggest an elevation of AM release. Given the potent vasodilatory action of AM, the increase in the synthesis and release of AM in the cirrhotic liver may also contribute to peripheral vasodilatation in liver cirrhosis.