Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuka Iga is active.

Publication


Featured researches published by Yuka Iga.


Journal of Fluids Engineering-transactions of The Asme | 2003

Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil

Yuka Iga; Motohiko Nohmi; Akira Goto; Byeong Rog Shin; Toshiaki Ikohagi

2-D unsteady cavity flows through hydrofoils in cascade which is the most fundamental element of turbomachinery are numerically calculated. In particular, attention was paid to instability phenomena of the sheet cavity in transient cavitation condition and the mechanism of break-off phenomenon was examined. A TVD MacCormacks scheme employing a locally homogeneous model of compressible gas-liquid two-phase media was applied to analyze above cavity flows. The present method permits us to treat the whole cavitating/noncavitating unsteady flow field. By analyzing numerical results in detail, it became clear that there are at least two mechanisms in the break-off phenomena of sheet cavity; one is that re-entrant jets play a dominant role in such a break-off phenomenon, and the other is that pressure waves propagating inside the cavity bring about an another type of break-off phenomenon accompanied with cavity surface waves.


Journal of Fluids Engineering-transactions of The Asme | 2004

Numerical Analysis of Cavitation Instabilities Arising in the Three-Blade Cascade

Yuka Iga; Motohiko Nohml; Akira Goto; Toshiaki Ikohagi

Three types of cavitation instabilities through flat plate cascades, which are similar to forward rotating cavitation, rotating-stall cavitation and cavitation surge occurring in high-speed rotating fluid machinery, are represented numerically under the three-blade cyclic condition. A numerical method employing a locally homogeneous model of compressible gas-liquid two-phase medium is applied to solve the above flow fields, because this permits the entire flow field inside and outside the cavity to be treated through only one system of governing equations. In addition, the numerical method suites to analyze unsteady cavitating flow with a long time evolution. From the calculated results of the present numerical simulation with wide range of cavitation number and flow rate, we obtain a cavitation performance curve of the present three-blade cyclic cascade, analyze the aspects of unsteady cavitation, and discuss the characteristics and mechanisms of cavitation


Journal of Fluids Engineering-transactions of The Asme | 2011

Thermodynamic Effect on Subsynchronous Rotating Cavitation and Surge Mode Oscillation in a Space Inducer

Yoshiki Yoshida; Hideaki Nanri; Kengo Kikuta; Yusuke Kazami; Yuka Iga; Toshiaki Ikohagi

The relationship between the thermodynamic effect and subsynchronous rotating cavitation was investigated with a focus on cavity fluctuations. Experiments on a three-bladed inducer were conducted with liquid nitrogen at different temperatures (74, 78, and 83 K) to confirm the dependence of the thermodynamic effects. Subsynchronous rotating cavitation appeared at lower cavitation numbers in liquid nitrogen at 74 K, the same as in cold water. In contrast, in liquid nitrogen at 83 K the occurrence of subsynchronous rotating cavitation was suppressed because of the increase of the thermodynamic effect due to the rising temperature. Furthermore, unevenness of cavity length under synchronous rotating cavitation at 83 K was also decreased by the thermodynamic effect. However, surge mode oscillation occurred simultaneously under this weakened synchronous rotating cavitation. Cavity lengths on the blades oscillated with the same phase and maintained the uneven cavity pattern. It was inferred that the thermodynamic effect weakened peripheral cavitation instability, i.e., synchronous rotating cavitation, and thus axial cavitation instability, i.e., surge mode oscillation, was easily induced due to the synchronization of the cavity fluctuation with an acoustic resonance in the present experimental inlet-pipe system.


Journal of Fluids Engineering-transactions of The Asme | 2011

Numerical Analysis of Three Types of Cavitation Surge in Cascade

Yuka Iga; Kei Hashizume; Yoshiki Yoshida

In the present study, numerical analysis of a cavitating three-blade cyclic flat-plate cascade was performed considering cavitation surge, which is a type of cavitation instability in pumping machinery. A numerical method employing a uniquely developed gas-liquid two-phase model was applied to solve the unsteady cavitating flow field, where compressibility is considered in the liquid phase of the model. From the numerical results, the surging oscillations by cavitation represented in the present cascade system can be classified into three types of cavitation surge based on the oscillation characteristics and the flow fields. In the first type, oscillation is composed of small-vortex cavitation and large scale pulsation, which correspond to “surge mode oscillation” whose frequency is not affected by cavity volume. The second type of oscillation is composed of sheet cavitation with a re-entrant jet, which corresponds to so-called “cavitation surge.” The final type of oscillation is subsynchronous rotating cavitation accompanied by pulsation, which is considered as superposition of system and local instability. In addition, the locking phenomenon of break-off frequency of cavitation in the surging oscillations and the mechanism of the pulsation phenomenon accompanied by re-entrant jet in the present cascade were investigated.


ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences | 2008

Numerical Prediction Method of Cavitation Erosion

Motohiko Nohmi; Toshiaki Ikohagi; Yuka Iga

Bubble behavior in cavitating flow is analyzed for the development of practical erosion prediction method. CFD analysis with cavitation model is carried out for the flow field around a hydrofoil. Afterwards computation of bubble dynamics is carried out coupled with flow field CFD results by one way approach. For the bubble dynamic calculation, Rayleigh-Plesset equation is adopted. Bubble behaviors in the collapse of cloud cavitaion and in the break off of sheet cavity are analyzed. Bubble behavior at the trailing edge of sheet cavity is also calculated. It is observed that steep pressure change in the flow causes oscillation of the bubbles. Based on this qualitative information of bubble behaviors, numerical cavitation aggressiveness is simply defined. This numerical cavitation aggressiveness is a function of local void fraction and pressure over the solid surface and can be calculated directly from the cavitating flow field CFD results without concerning bubble dynamics.Copyright


Journal of Propulsion and Power | 2011

Mechanism of Propagation Direction of Rotating Cavitations in a Cascade

Yuka Iga; Yoshiki Yoshida

nor the mechanism of the discontinuity of the propagation speed during the transition between different types of rotating cavitations has been determined thus far. The present study indicates that they can be explained by the existence of latent rotating stall and a specific feature of cavitation: a decrease in the break-off frequency of a cavitation according to its development.


International Journal of Rotating Machinery | 2008

Interaction between Uneven Cavity Length and Shaft Vibration at the Inception of Synchronous Rotating Cavitation

Yoshiki Yoshida; Yusuke Kazami; K. Nagaura; Mitsuru Shimagaki; Yuka Iga; Toshiaki Ikohagi

Asymmetric cavitation is known as one type of the sources of cavitation induced vibration in turbomachinery. Cavity lengths are unequal on each blade under condition of synchronous rotating cavitation, which causes synchronous shaft vibration. To investigate the relationship of the cavity length, fluid force, and shaft vibration in a cavitating inducer with three blades, we observed the unevenness of cavity length at the inception of synchronous rotating cavitation. The fluid force generated by the unevenness of the cavity length was found to grow exponentially, and the amplitude of shaft vibration was observed to increase exponentially. These experimental results indicate that the synchronous shaft vibration due to synchronous rotating cavitation is like selfexcited vibrations arising from the coupling between cavitation instability and rotordynamics.


IOP Conference Series: Earth and Environmental Science | 2016

Study of methane hydrate as a future energy resource: low emission extraction and power generation

Lin Chen; Hikaru Yamada; Yuki Kanda; Hirotoshi Sasaki; Junnosuke Okajima; Yuka Iga; Atsuki Komiya; Shigenao Maruyama

With the fast increase of world energy consumption in recent years, new and sustainable energy sources are becoming more and more important. Methane Hydrate is one promising candidate for the future energy supply of humankind, due to its vast existence in permafrost regions and near-coast seabed. This study is focused on the effective low emission utilization of methane hydrate from deep seabed. The Nankai Trough of Japan is taken as the target region in this study for methane hydrate extraction and utilization system design. Low emission system and power generation system with CCS (Carbon Capture and Sequestration) processes are proposed and analyzed for production rate and electricity generation efficiency problem study. It is found that the gas production price can reach the current domestic natural gas supply price level if the production rate can be improved. The optimized system is estimated to have power efficiency about 35%. In addition, current development and analysis from micro-to-macro scale methane hydrate production and dissociation dynamics are also discussed into detail in this study.


International Journal of Fluid Machinery and Systems | 2012

Numerical Analysis of the Influence of Acceleration on Cavitation Instabilities that arise in Cascade

Yuka Iga; Tasuku Konno

In the turbopump inducer of a liquid propellant rocket engine, cavitation is affected by acceleration that occurs during an actual launch sequence. Since cavitation instabilities such as rotating cavitations and cavitation surges are suppressed during launch, it is difficult to obtain data on the influence of acceleration on cavitation instabilities. Therefore, as a fundamental investigation, in the present study, a three-blade cyclic cascade is simulated numerically in order to investigate the influence of acceleration on time-averaged and unsteady characteristics of cavitation that arise in cascade. Several cases of acceleration in the axial direction of the cascade, including accelerations in the upstream and downstream directions, are considered. The numerical results reveal that cavity volume is suppressed in low cavitation number condition and cavitation performance increases as a result of high acceleration in the axial-downstream direction, also, the inverse tendency is observed in the axial-upstream acceleration. Then, the regions in which the individual cavitation instabilities occur shift slightly to a low-cavitation-number region as the acceleration increases downstream. In addition, in a downstream acceleration field, neither sub-synchronous rotating cavitation nor rotating-stall cavitation are observed. On the other hand, rotating-stall cavitation occurs in a relatively higher-cavitation-number region in an upstream acceleration field. Then, acceleration downstream is robust against cavitation instabilities, whereas cavitation instabilities easily occur in the case of acceleration upstream. Additionally, comparison with the Froude number under the actual launch conditions of a Japanese liquid propellant rocket reveals that the cavitation performance will not be affected by the acceleration under the current launch conditions.


International Journal of Fluid Machinery and Systems | 2016

Erratum: Numerical Analysis of Damping Effect of Liquid Film on Material in High Speed Liquid Droplet Impingement

Hirotoshi Sasaki; Naoya Ochiai; Yuka Iga

By high speed Liquid Droplet Impingement (LDI) on material, fluid systems are seriously damaged, therefore, it is important for the solution of the erosion problem of fluid systems to consider the effect of material in LDI. In this study, by using an in-house fluid/material two-way coupled method which considers reflection and transmission of pressure, stress and velocity on the fluid/material interface, high-speed LDI on wet/dry material surface is simulated. As a result, in the case of LDI on wet surface, maximum equivalent stress are less than those of dry surface due to damping effect of liquid film. Empirical formula of the damping effect function is formulated with the fluid factors of LDI, which are impingement velocity, droplet diameter and thickness of liquid film on material surface.

Collaboration


Dive into the Yuka Iga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiki Yoshida

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge