Yuka Imaoka
Olympus Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuka Imaoka.
Scientific Reports | 2013
Nobuaki Sakai; Aiko Yoshida; Yoshitsugu Uekusa; Akira Yagi; Yuka Imaoka; Shuichi Ito; Koichi Karaki; Kunio Takeyasu
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Scientific Reports | 2017
Eiji Usukura; Akihiro Narita; Akira Yagi; Nobuaki Sakai; Yoshitsugu Uekusa; Yuka Imaoka; Shuichi Ito; Jiro Usukura
The use of cryosectioning facilitates the morphological analysis and immunocytochemistry of cells in tissues in atomic force microscopy (AFM). The cantilever can access all parts of a tissue sample in cryosections after the embedding medium (sucrose) has been replaced with phosphate-buffered saline (PBS), and this approach has enabled the production of a type of high-resolution image. The images resembled those obtained from freeze-etching replica electron microscopy (EM) rather than from thin-section EM. The AFM images showed disks stacked and enveloped by the cell membrane in rod photoreceptor outer segments (ROS) at EM resolution. In addition, ciliary necklaces on the surface of connecting cilium, three-dimensional architecture of synaptic ribbons, and the surface of the post-synaptic membrane facing the active site were revealed, which were not apparent using thin-section EM. AFM could depict the molecular binding of anti-opsin antibodies conjugated to a secondary fluorescent antibody bound to the disk membrane. The specific localization of the anti-opsin binding sites was verified through correlation with immunofluorescence signals in AFM combined with confocal fluorescence microscope. To prove reproducibility in other tissues besides retina, cryosectioning-AFM was also applied to elucidate molecular organization of sarcomere in a rabbit psoas muscle.
PLOS Biology | 2018
Aiko Yoshida; Nobuaki Sakai; Yoshitsugu Uekusa; Yuka Imaoka; Yoshitsuna Itagaki; Shige H. Yoshimura
Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME.
Archive | 2010
Yuka Imaoka; Yasuo Sasaki; Kiyohiko Tateyama
Archive | 2010
Kiyohiko Tateyama; Yasuo Sasaki; Yuka Imaoka
Microscopy and Microanalysis | 2018
Jiro Usukura; Eiji Usukura; Akihiro Narita; Akira Yagi; Nobuaki Sakai; Yoshitsugu Uekusa; Yuka Imaoka; Shuichi Ito
生物物理 | 2013
Kiyohiko Tateyama; Akira Yagi; Nobuaki Sakai; Yoshitsugu Uekusa; Yuka Imaoka; Shuichi Ito
Seibutsu Butsuri | 2013
Kiyohiko Tateyama; Akira Yagi; Nobuaki Sakai; Yoshitsugu Uekusa; Yuka Imaoka; Shuichi Ito
Archive | 2008
Yasuo Sasaki; Yuka Imaoka; Kiyohiko Tateyama
Archive | 2008
Yasuo Sasaki; Yuka Imaoka; Kiyohiko Tateyama