Yuka Takei
National Institute of Radiological Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuka Takei.
Medical Physics | 2010
Takuji Furukawa; Taku Inaniwa; Shinji Sato; Toshiyuki Shirai; Yuka Takei; Eri Takeshita; Kota Mizushima; Yoshiyuki Iwata; Takeshi Himukai; Shinichiro Mori; Shigekazu Fukuda; Shinichi Minohara; E. Takada; T. Murakami; Koji Noda
PURPOSE A project to construct a new treatment facility, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy at NIRS. This new treatment facility is equipped with a 3D irradiation system with pencil-beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To achieve fast rescanning within an acceptable irradiation time, the authors developed a fast scanning system. METHODS In order to verify the validity of the design and to demonstrate the performance of the fast scanning prior to use in the new treatment facility, a new scanning-irradiation system was developed and installed into the existing HIMAC physics-experiment course. The authors made strong efforts to develop (1) the fast scanning magnet and its power supply, (2) the high-speed control system, and (3) the beam monitoring. The performance of the system including 3D dose conformation was tested by using the carbon beam from the HIMAC accelerator. RESULTS The performance of the fast scanning system was verified by beam tests. Precision of the scanned beam position was less than +/-0.5 mm. By cooperating with the planning software, the authors verified the homogeneity of the delivered field within +/-3% for the 3D delivery. This system took only 20 s to deliver the physical dose of 1 Gy to a spherical target having a diameter of 60 mm with eight rescans. In this test, the average of the spot-staying time was considerably reduced to 154 micros, while the minimum staying time was 30 micros. CONCLUSIONS As a result of this study, the authors verified that the new scanning delivery system can produce an accurate 3D dose distribution for the target volume in combination with the planning software.
Medical Physics | 2006
Tatsuaki Kanai; Nobuyuki Kanematsu; Shinichi Minohara; Masataka Komori; M. Torikoshi; Hiroshi Asakura; Noritoshi Ikeda; Takayuki Uno; Yuka Takei
The commissioning of conformal radiotherapy system using heavy-ion beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC) is described in detail. The system at HIMAC was upgraded for a clinical trial using a new technique: large spot uniform scanning with conformal layer stacking. The system was developed to localize the irradiation dose to the target volume more effectively than with the old system. With the present passive irradiation method using a ridge filter, a scatterer, a pair of wobbler magnets, and a multileaf collimator, the width of the spread-out Bragg peak (SOBP) in the radiation field could not be changed. With dynamic control of the beam-modifying devices during irradiation, a more conformal radiotherapy could be achieved. In order to safely perform treatments with this conformal therapy, the moving devices should be watched during irradiation and the synchronousness among the devices should be verified. This system, which has to be safe for patient irradiations, was constructed and tested for safety and for the quality of the dose localization realized. Through these commissioning tests, we were successfully able to prepare the conformal technique using layer stacking for patients. Subsequent to commissioning the technique has been applied to patients in clinical trials.
Medical Physics | 2008
Shunsuke Yonai; Nobuyuki Kanematsu; Masataka Komori; Tatsuaki Kanai; Yuka Takei; O. Takahashi; Yoshiharu Isobe; Mutsumi Tashiro; Hajime Koikegami; Hideki Tomita
The National Institute of Radiological Sciences (NIRS) has extensively studied carbon-ion radiotherapy at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) with some positive outcomes, and has established its efficacy. Therefore, efforts to distribute the therapy to the general public should be made, for which it is essential to enable direct application of clinical and technological experiences obtained at NIRS. For widespread use, it is very important to reduce the cost through facility downsizing with minimal acceleration energy to deliver the HIMAC-equivalent clinical beams. For the beam delivery system, the requirement of miniaturization is translated to reduction in length while maintaining the clinically available field size and penetration range for range-modulated uniform broad beams of regular fields that are either circular or square for simplicity. In this paper, we evaluate the various wobbling methods including original improvements, especially for application to the compact facilities through the experimental and computational studies. The single-ring wobbling method used at HIMAC is the best one including a lot of experience at HIMAC but the residual range is a fatal problem in the case of a compact facility. On the other hand, uniform wobbling methods such as the spiral and zigzag wobbling methods are effective and suitable for a compact facility. Furthermore, these methods can be applied for treatment with passive range modulation including respiratory gated irradiation. In theory, the choice between the spiral and zigzag wobbling methods depends on the shape of the required irradiation field. However, we found that it is better to use the zigzag wobbling method with transformation of the wobbling pattern even when a circular uniform irradiation field is required, because it is difficult to maintain the stability of the wobbler magnet due to the rapid change of the wobbler current in the spiral wobbling method. The regulated wobbling method, which is our improvement, can well expand the uniform irradiation field and lead to reducing the power requirement of the wobbler magnets. Our evaluations showed that the regulated zigzag wobbling method is the most suitable method for use in currently designed compact carbon-therapy facilities.
Journal of Applied Clinical Medical Physics | 2012
Shinichiro Mori; Toshiyuki Shirai; Yuka Takei; Takuji Furukawa; Taku Inaniwa; Yuka Matsuzaki; Motoki Kumagai; T. Murakami; Koji Noda
Our institution established a new treatment facility for carbon ion beam scanning therapy in 2010. The major advantages of scanning beam treatment compared to the passive beam treatment are the following: high dose conformation with less excessive dose to the normal tissues, no bolus compensator and patient collimator/ multi‐leaf collimator, better dose efficiency by reducing the number of scatters. The new facility was designed to solve several problems encountered in the existing facility, at which several thousand patients were treated over more than 15 years. Here, we introduce the patient handling system in the new treatment facility. The new facility incorporates three main systems, a scanning irradiation system (S‐IR), treatment planning system (TPS), and patient handling system (PTH). The PTH covers a wide range of functions including imaging, geometrical/position accuracy including motion management (immobilization, robotic arm treatment bed), layout of the treatment room, treatment workflow, software, and others. The first clinical trials without respiratory gating have been successfully started. The PTH allows a reduction in patient stay in the treatment room to as few as 7 min. The PTH plays an important role in carbon ion beam scanning therapy at the new institution, particularly in the management of patient handling, application of image‐guided therapy, and improvement of treatment workflow, and thereby allows substantially better treatment at minimum cost. PACS numbers: 87.56.‐v; 87.57.‐s; 87.55.‐x
Medical Physics | 2009
A. Ishizaki; K. Ishii; Nobuyuki Kanematsu; Tatsuaki Kanai; Shunsuke Yonai; Yuki Kase; Yuka Takei; Masataka Komori
Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs.
Physica Medica | 2018
Shinichiro Mori; Yuka Takei; Toshiyuki Shirai; Y. Hara; Takuji Furukawa; Taku Inaniwa; Katsuyuki Tanimoto; Minoru Tajiri; Daigo Kuroiwa; Taku Kimura; Naoyoshi Yamamoto; Shigeru Yamada; Hiroshi Tsuji; Tadashi Kamada
INTRODUCTION In the 7 years since our facility opened, we have treated >2000 patients with pencil-beam scanned carbon-ion beam therapy. METHODS To summarize treatment workflow, we evaluated the following five metrics: i) total number of treated patients; ii) treatment planning time, not including contouring procedure; iii) quality assurance (QA) time (daily and patient-specific); iv) treatment room occupancy time, including patient setup, preparation time, and beam irradiation time; and v) daily treatment hours. These were derived from the oncology information system and patient handling system log files. RESULTS The annual number of treated patients reached 594, 7 years from the facility startup, using two treatment rooms. Mean treatment planning time was 6.0 h (minimum: 3.4 h for prostate, maximum: 9.3 h for esophagus). Mean time devoted to daily QA and patient-specific QA were 22 min and 13.5 min per port, respectively, for the irradiation beam system. Room occupancy time was 14.5 min without gating for the first year, improving to 9.2 min (8.2 min without gating and 12.8 min with gating) in the second. At full capacity, the system ran for 7.5 h per day. CONCLUSIONS We are now capable of treating approximately 600 patients per year in two treatment rooms. Accounting for the staff working time, this performance appears reasonable compared to the other facilities.
Archive | 2014
Toshiyuki Shirai; Yuka Takei
The carbon-ion radiotherapy system consists of oncology information system (OIS), radiotherapy treatment planning system (RTPS), and beam delivery system (BDS), which is similar to the standard radiotherapy system. However, there are some differences, such as a big accelerator system, no gantry system (except HIT), and an efficient workflow system. The outline of the carbon-ion radiotherapy (C-ion RT) system and the workflow system is introduced.
Journal of Radiation Research | 2007
Koji Noda; Takuji Furukawa; T. Fujisawa; Yoshiyuki Iwata; Tatsuaki Kanai; M. Kanazawa; A. Kitagawa; Masataka Komori; Shinichi Minohara; T. Murakami; M. Muramatsu; Shinji Sato; Yuka Takei; Mutsumi Tashiro; M. Torikoshi; Satoru Yamada; Ken Yusa
Journal of Radiation Research | 2010
Shinichi Minohara; Shigekazu Fukuda; Nobuyuki Kanematsu; Yuka Takei; Takuji Furukawa; Taku Inaniwa; Naruhiro Matsufuji; Shinichiro Mori; Koji Noda
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2008
K. Noda; Takuji Furukawa; T. Fujimoto; Taku Inaniwa; Yoshiyuki Iwata; Tatsuaki Kanai; M. Kanazawa; Shinichi Minohara; T. Miyoshi; T. Murakami; Y. Sano; S. Sato; E. Takada; Yuka Takei; Kota Torikai; M. Torikoshi