Yuka Thomas
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuka Thomas.
The Journal of Infectious Diseases | 2015
Hirohito Ogawa; Hiroko Miyamoto; Eri Nakayama; Reiko Yoshida; Ichiro Nakamura; Hirofumi Sawa; Akihiro Ishii; Yuka Thomas; Emiko Nakagawa; Keita Matsuno; Masahiro Kajihara; Junki Maruyama; Naganori Nao; Mieko Muramatsu; Makoto Kuroda; Edgar Simulundu; Katendi Changula; Bernard M. Hang'ombe; Boniface Namangala; Andrew Nambota; Jackson Katampi; Manabu Igarashi; Kimihito Ito; Heinz Feldmann; Chihiro Sugimoto; Ladslav Moonga; Aaron S. Mweene; Ayato Takada
Fruit bats are suspected to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Using an enzyme-linked immunosorbent assay based on the viral glycoprotein antigens, we detected filovirus-specific immunoglobulin G antibodies in 71 of 748 serum samples collected from migratory fruit bats (Eidolon helvum) in Zambia during 2006-2013. Although antibodies to African filoviruses (eg, Zaire ebolavirus) were most prevalent, some serum samples showed distinct specificity for Reston ebolavirus, which that has thus far been found only in Asia. Interestingly, the transition of filovirus species causing outbreaks in Central and West Africa during 2005-2014 seemed to be synchronized with the change of the serologically dominant virus species in these bats. These data suggest the introduction of multiple species of filoviruses in the migratory bat population and point to the need for continued surveillance of filovirus infection of wild animals in sub-Saharan Africa, including hitherto nonendemic countries.
Emerging Infectious Diseases | 2011
Akihiro Ishii; Yuka Thomas; Ladslav Moonga; Ichiro Nakamura; Aiko Ohnuma; Bernard M. Hang’ombe; Ayato Takada; Aaron S. Mweene; Hirofumi Sawa
To investigate arenavirus in Zambia, we characterized virus from the kidneys of 5 arenavirus RNA–positive rodents (Mastomys natalensis) among 263 captured. Full-genome sequences of the viruses suggested that they were new strains similar to Lassa virus–related arenaviruses. Analyzing samples from additional rodents and other species can elucidate epizootiologic aspects of arenaviruses.
Journal of General Virology | 2011
Yasuko Orba; Shintaro Kobayashi; Ichiro Nakamura; Akihiro Ishii; Bernard M. Hang'ombe; Aaron S. Mweene; Yuka Thomas; Takashi Kimura; Hirofumi Sawa
To investigate polyomavirus infection in wild rodents, we analysed DNA samples from the spleens of 100 wild rodents from Zambia using a broad-spectrum PCR-based assay. A previously unknown polyomavirus genome was identified in a sample from a multimammate mouse (Mastomys species) and the entire viral genome of 4899 bp was subsequently sequenced. This viral genome contained potential ORFs for the capsid proteins, VP1, VP2 and VP3, and early proteins, small t antigen and large T antigen. Phylogenetic analysis showed that it was a novel member of the family Polyomaviridae, and thus the virus was tentatively named mastomys polyomavirus. After transfection of the viral genome into several mammalian cell lines, transient expression of the VP1 and large T antigen proteins was confirmed by immunoblotting and immunocytochemical analyses. Comparison of large T antigen function in mastomys polyomavirus with that in rhesus monkey polyomavirus SV40 and human polyomavirus JC virus revealed that the large T antigen from mastomys polyomavirus interacted with the tumour suppressor protein pRb, but not with p53.
Journal of General Virology | 2012
Akihiro Ishii; Yuka Thomas; Ladslav Moonga; Ichiro Nakamura; Aiko Ohnuma; Bernard M. Hang'ombe; Ayato Takada; Aaron S. Mweene; Hirofumi Sawa
In order to survey arenaviruses in the Republic of Zambia, we captured 335 rodents from three cities between 2010 and 2011. Eighteen Luna virus (LUNV) and one lymphocytic choriomeningitis virus (LCMV)-related virus RNAs were detected by one-step RT-PCR from Mastomys natalensis and Mus minutoides, respectively. Four LUNV strains and one LCMV-related virus were isolated, and the whole genome nucleotide sequence was determined by pyrosequencing. Phylogenetic analyses revealed that the LUNV clade consists of two branches that are distinguished by geographical location and that the LCMV-related virus belongs to the LCMV clade, but diverges from the typical LCMVs. Comparison of nucleoprotein amino acid sequences indicated that the LCMV-related virus could be designated a novel arenavirus, which was tentatively named as the Lunk virus. Amino acid sequences of the GP, NP, Z and L proteins showed poor similarity among the three Zambian arenavirus strains, i.e. Luna, Lunk and Lujo virus.
Journal of General Virology | 2013
Hiroki Yamaguchi; Shintaro Kobayashi; Akihiro Ishii; Hirohito Ogawa; Ichiro Nakamura; Ladslav Moonga; Bernard M. Hang'ombe; Aaron S. Mweene; Yuka Thomas; Takashi Kimura; Hirofumi Sawa; Yasuko Orba
To examine polyomavirus (PyV) infection in wildlife, we investigated the presence of PyVs in Zambia with permission from the Zambia Wildlife Authority. We analysed 200 DNA samples from the spleens and kidneys (n = 100 each) of yellow baboons and vervet monkeys (VMs) (n = 50 each). We detected seven PyV genome fragments in 200 DNA samples using a nested broad-spectrum PCR method, and identified five full-length viral genomes using an inverse PCR method. Phylogenetic analysis of virally encoded proteins revealed that four PyVs were closely related to either African green monkey PyV or simian agent 12. Only one virus detected from a VM spleen was found to be related, with relatively low nucleotide sequence identity (74 %), to the chimpanzee PyV, which shares 48 % nucleotide sequence identity with the human Merkel cell PyV identified from Merkel cell carcinoma. The obtained entire genome of this virus was 5157 bp and had large T- and small t-antigens, and VP1 and VP2 ORFs. This virus was tentatively named vervet monkey PyV 1 (VmPyV1) as a novel PyV. Comparison with other PyVs revealed that VmPyV1, like chimpanzee PyV, had a longer VP1 ORF. To examine whether the VmPyV1 genome could produce viral proteins in cultured cells, the whole genome was transfected into HEK293T cells. We detected VP1 protein expression in the transfected HEK293T cells by immunocytochemical and immunoblot analyses. Thus, we identified a novel PyV genome from VM spleen.
Journal of General Virology | 2014
Michihito Sasaki; Walter Muleya; Akihiro Ishii; Yasuko Orba; Bernard M. Hang'ombe; Aaron S. Mweene; Ladslav Moonga; Yuka Thomas; Takashi Kimura; Hirofumi Sawa
Rodents and shrews are known to harbour various viruses. Paramyxoviruses have been isolated from Asian and Australian rodents, but little is known about them in African rodents. Recently, previously unknown paramyxovirus sequences were found in South African rodents. To date, there have been no reports related to the presence and prevalence of paramyxoviruses in shrews. We found a high prevalence of paramyxoviruses in wild rodents and shrews from Zambia. Semi-nested reverse transcription-PCR assays were used to detect paramyxovirus RNA in 21 % (96/462) of specimens analysed. Phylogenetic analysis revealed that these viruses were novel paramyxoviruses and could be classified as morbillivirus- and henipavirus-related viruses, and previously identified rodent paramyxovirus-related viruses. Our findings suggest the circulation of previously unknown paramyxoviruses in African rodents and shrews, and provide new information regarding the geographical distribution and genetic diversity of paramyxoviruses.
Journal of Veterinary Medical Science | 2014
Walter Muleya; Michihito Sasaki; Yasuko Orba; Akihiro Ishii; Yuka Thomas; Emiko Nakagawa; Hirohito Ogawa; Bernard M. Hang'ombe; Boniface Namangala; Aaron S. Mweene; Ayato Takada; Takashi Kimura; Hirofumi Sawa
ABSTRACT In this study, we describe the detection of novel paramyxoviruses from the Eidolon helvum species of fruit bats. We extracted RNA from 312 spleen samples from bats captured in Zambia over a period of 4 years (2008–2011). Semi-nested RT-PCR detected a total of 25 (8%) positive samples for paramyxoviruses which were then directly sequenced and analyzed using phylogenetic analysis. Among the positive samples, seven novel paramyxoviruses were detected. Five viruses were closely related to the genus Henipavirus, while two viruses were related to the unclassified Bat paramyxoviruses from Ghana and Congo Brazzaville. Our study identified novel Henipavirus-related and unrelated viruses using RT-PCR in fruit bats from Kansaka National Park and indicated the presence of similar Bat paramyxoviruses originating from wide geographic areas, suggesting the ability of bats to harbor and transmit viruses. The presence of these viruses in fruit bats might pose a public health risk.
Genome Announcements | 2014
Naomi Ohnishi; Fumito Maruyama; Hirohito Ogawa; Hirokazu Kachi; Shunsuke Yamada; Daisuke Fujikura; Ichiro Nakagawa; Mudenda B. Hang'ombe; Yuka Thomas; Aaron S. Mweene; Hideaki Higashi
ABSTRACT In August 2011, an anthrax outbreak occurred among Hippopotamus amphibius hippopotamuses and humans in Zambia. Here, we report the draft genome sequence of the Bacillus anthracis outbreak strain CZC5, isolated from tissues of H. amphibius hippopotamuses that had died in the outbreak area.
Journal of General Virology | 2015
Yasuko Orba; Michihito Sasaki; Hiroki Yamaguchi; Akihiro Ishii; Yuka Thomas; Hirohito Ogawa; Bernard M. Hang'ombe; Aaron S. Mweene; Shigeru Morikawa; Masayuki Saijo; Hirofumi Sawa
Human monkeypox is a viral zoonosis caused by monkeypox virus, an orthopoxvirus (OPXV). The majority of human monkeypox cases have been reported in moist forested regions in West and Central Africa, particularly in the Democratic Republic of the Congo (DRC). In this study we investigated zoonotic OPXV infection among wild animals in Zambia, which shares a border with DRC, to assess the geographical distribution of OPXV. We screened for OPXV antibodies in sera from non-human primates (NHPs), rodents and shrews by ELISA, and performed real-time PCR to detect OPXV DNA in spleen samples. Serological analysis indicated that 38 of 259 (14.7 %) rodents, 14 of 42 (33.3 %) shrews and 4 of 188 (2.1 %) NHPs had antibodies against OPXV. The OPXV DNA could not be detected in spleens from any animals tested. Our results indicated that wild animals living in rural human habitation areas of Zambia have been infected with OPXV.
Parasites & Vectors | 2014
Jesca Nakayima; Kyouko Hayashida; Ryo Nakao; Akihiro Ishii; Hirohito Ogawa; Ichiro Nakamura; Ladslav Moonga; Bernard M. Hang’ombe; Aaron S. Mweene; Yuka Thomas; Yasuko Orba; Hirofumi Sawa; Chihiro Sugimoto
BackgroundWildlife may harbor infectious pathogens that are of zoonotic concern acting as a reservoir of diseases transmissible to humans and domestic animals. This is due to human-wildlife conflicts that have become more frequent and severe over recent decades, competition for the available natural habitats and resources leading to increased human encroachment on previously wild and uninhabited areas.MethodsA total of 88 spleen DNA samples from baboons and vervet monkeys from Zambia were tested for zoonotic pathogens using genus or species-specific PCR. The amplified products were then subjected to sequencing analysis.ResultsWe detected three different pathogenic agents, including Anaplasma phagocytophilum in 12 samples (13.6%), Rickettsia spp. in 35 samples (39.8%) and Babesia spp. in 2 samples (2.3%).ConclusionThe continuously increasing contacts between humans and primate populations raise concerns about transmission of pathogens between these groups. Therefore, increased medical and public awareness and public health surveillance support will be required to detect and control infections caused by these agents at the interface between humans and wildlife.