Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yukako Chiba is active.

Publication


Featured researches published by Yukako Chiba.


The Plant Cell | 2009

Identification and Characterization of Maize and Barley Lsi2-Like Silicon Efflux Transporters Reveals a Distinct Silicon Uptake System from That in Rice

Namiki Mitani; Yukako Chiba; Naoki Yamaji; Jian Feng Ma

Silicon (Si) uptake has been extensively examined in rice (Oryza sativa), but it is poorly understood in other gramineous crops. We identified Low Silicon Rice 2 (Lsi2)-like Si efflux transporters from two important gramineous crops: maize (Zea mays) and barley (Hordeum vulgare). Both maize and barley Lsi2 expressed in Xenopus laevis oocytes showed Si efflux transport activity. Furthermore, barley Lsi2 was able to recover Si uptake in a rice mutant defective in Si efflux. Maize and barley Lsi2 were only expressed in the roots. Expression of maize and barley Lsi2 was downregulated in response to exogenously applied Si. Moreover, there was a significant positive correlation between the ability of roots to absorb Si and the expression levels of Lsi2 in eight barley cultivars, suggesting that Lsi2 is a key Si transporter in barley. Immunostaining showed that maize and barley Lsi2 localized only at the endodermis, with no polarity. Protein gel blot analysis indicated that maize and barley Lsi2 localized on the plasma membrane. The unique features of maize and barley Si influx and efflux transporters, including their cell-type specificity and the lack of polarity of their localization in Lsi2, indicate that these crops have a different Si uptake system from that in rice.


Plant Journal | 2009

HvLsi1 is a silicon influx transporter in barley

Yukako Chiba; Namiki Mitani; Naoki Yamaji; Jian Feng Ma

Most plants accumulate silicon in their bodies, and this is thought to be important for resistance against biotic and abiotic stresses; however, the molecular mechanisms for Si uptake and accumulation are poorly understood. Here, we describe an Si influx transporter, HvLsi1, in barley. This protein is homologous to rice influx transporter OsLsi1 with 81% identity, and belongs to a Nod26-like major intrinsic protein sub-family of aquaporins. Heterologous expression in both Xenopus laevis oocytes and a rice mutant defective in Si uptake showed that HvLsi1 has transport activity for silicic acid. Expression of HvLsi1 was detected specifically in the basal root, and the expression level was not affected by Si supply. There was a weak correlation between Si uptake and the expression level of HvLsi1 in eight cultivars tested. In the seminal roots, HvLsi1 is localized on the plasma membrane on the distal side of epidermal and cortical cells. HvLsi1 is also located in lateral roots on the plasma membrane of hypodermal cells. These cell-type specificity of localization and expression patterns of HvLsi1 are different from those of OsLsi1. These observations indicate that HvLsi1 is a silicon influx transporter that is involved in radial transport of Si through the epidermal and cortical layers of the basal roots of barley.


Proceedings of the National Academy of Sciences of the United States of America | 2003

S-adenosyl-l-methionine is an effector in the posttranscriptional autoregulation of the cystathionine γ-synthase gene in Arabidopsis

Yukako Chiba; Ryoko Sakurai; Michiko Yoshino; Kimihiro Ominato; Mari Ishikawa; Hitoshi Onouchi; Satoshi Naito

Cystathionine γ-synthase, the first committed enzyme of methionine biosynthesis in higher plants, is encoded by the CGS1 gene in Arabidopsis thaliana. We have shown previously that the stability of the CGS1 mRNA is negatively regulated in response to methionine application [Chiba, Y., Ishikawa, M., Kijima, F., Tyson, R. H., Kim, J., Yamamoto, A., Nambara, E., Leustek, T., Wallsgrove, R. M. & Naito, S. (1999) Science 286, 1371-1374]. To determine whether methionine itself is the effector of the CGS1 exon 1-mediated posttranscriptional regulation, we carried out transfection experiments. The results suggested that, rather than methionine, S-adenosyl-l-methionine (AdoMet), or one of its metabolites, acts as the effector of this regulation. To further identify the actual effector, we exploited the wheat germ in vitro translation system. The effects of various metabolites and analogs of AdoMet were tested by using RNA carrying a CGS1 exon 1-reporter fusion. These tests identified AdoMet as the effector of this regulation. S-adenosyl-l-ethionine, an analog of AdoMet, also had effector activity. A. thaliana mto1 mutants, which are deficient in this regulation, showed a much reduced response to AdoMet in vitro, with a leaky allele showing a less reduced response. RNA translated in vitro in the presence of AdoMet contained a 5′-truncated RNA species, similar to the one that we previously suggested was an in vivo degradation intermediate of CGS1 mRNA. Together, the results show that the basic reactions of CGS1 exon 1-mediated posttranscriptional regulation occur in the wheat germ in vitro translation system, and that AdoMet acts as the effector.


Plant Physiology | 2012

Functional Characterization of a Silicon Transporter Gene Implicated in Silicon Distribution in Barley

Naoki Yamaji; Yukako Chiba; Namiki Mitani-Ueno; Jian Feng Ma

Silicon (Si) is a beneficial element for plant growth. In barley (Hordeum vulgare), Si uptake by the roots is mainly mediated by a Si channel, Low Silicon1 (HvLsi1), and an efflux transporter, HvLsi2. However, transporters involved in the distribution of Si in the shoots have not been identified. Here, we report the functional characterization of a homolog of HvLsi1, HvLsi6. HvLsi6 showed permeability for Si and localized to the plasma membrane. At the vegetative growth stage, HvLsi6 was expressed in both the roots and shoots. The expression level was unaffected by Si supply. In the roots, HvLsi6 was localized in epidermis and cortex cells of the tips, while in the leaf blades and sheaths, HvLsi6 was only localized at parenchyma cells of vascular bundles. At the reproductive growth stage, high expression of HvLsi6 was also found in the nodes. HvLsi6 in node I was polarly located at the transfer cells surrounding the enlarged vascular bundles toward the numerous xylem vessels. These results suggest that HvLsi6 is involved in Si uptake in the root tips, xylem unloading of Si in leaf blade and sheath, and intervascular transfer of Si in the nodes. Furthermore, HvLsi2 was found to be localized at the parenchyma cell layer adjacent to the transfer cells with opposite polarity of HvLsi6, suggesting that the coupling of HvLsi6 and HvLsi2 is involved in the intervascular transfer of Si at the nodes. Si translocated via the enlarged vascular bundles is unloaded to the transfer cells by HvLsi6, followed by HvLsi2 to reload Si to the diffuse vascular bundles, which are connected to the upper part of the plant, especially the panicles, the ultimate Si sink.


The Plant Cell | 2011

Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis.

Mayuki Tanaka; Junpei Takano; Yukako Chiba; Fabien Lombardo; Yuki Ogasawara; Hitoshi Onouchi; Satoshi Naito; Toru Fujiwara

NIP5;1 encodes a boron channel; this work shows that the 5′ untranslated region of NIP5;1 is required for mRNA accumulation in response to boron deficiency and mRNA degradation in response to high-boron conditions. Boron (B) is an essential plant micronutrient that is toxic at higher levels. NIP5;1 is a boric acid channel required for B uptake and growth under B deficiency. Accumulation of the NIP5;1 transcript is upregulated under B deficiency in Arabidopsis thaliana roots. To elucidate the mechanism of regulation, the 5′ untranslated region (UTR) of NIP5;1 was tested for its ability to confer B-dependent regulation using β-glucuronidase and green fluorescent protein as reporters. This analysis showed that the 5′ UTR was involved in NIP5;1 transcript accumulation in response to B conditions. We also found that high-B conditions trigger NIP5;1 mRNA degradation and that the sequence from +182 to +200 bp in the 5′ UTR is required for this mRNA destabilization. In the nip5;1-1 mutant background, a NIP5;1 complementation construct without the 5′ UTR produced high levels of mRNA accumulation, increased B concentrations in tissues, and reduced growth under high-B conditions. These data suggest that the 5′ UTR controls B-dependent NIP5;1 mRNA degradation and that NIP5;1 mRNA degradation is important for plant acclimation to high-B conditions.


Nature Communications | 2013

Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes

Akiko Satake; Tetsuhiro Kawagoe; Yukari Saburi; Yukako Chiba; Gen Sakurai; Hiroshi Kudoh

Understanding how climate warming has an impact on the life cycle schedule of terrestrial organisms is critical to evaluate ecosystem vulnerability to environmental change. Despite recent advances identifying the molecular basis of temperature responses, few studies have incorporated this knowledge into predictive models. Here we develop a method to forecast flowering phenology by modelling regulatory dynamics of key flowering-time genes in perennial life cycles. The model, parameterized by controlled laboratory experiments, accurately reproduces the seasonal changes in gene expression, the corresponding timing of floral initiation and return to vegetative growth after a period of flowering in complex natural environments. A striking scenario forecast by the model under climate warming is that the shift in the return time to vegetative growth is greater than that in floral initiation, which results in a significant reduction of the flowering period. Our study demonstrates the usefulness of gene expression assessment to predict unexplored risks of climate change.


Journal of Plant Biology | 2009

mRNA Degradation Machinery in Plants

Yukako Chiba; Pamela J. Green

Control of gene expression is exerted by multiple steps such as transcription, mRNA processing, mRNA export, mRNA degradation, translation, and posttranslational events. Recent discovery of small RNAs has enhanced the impact of posttranscriptional regulation, in particular, alterations in mRNA stability in the regulation of gene expression. Therefore, mRNA turnover is an important process not only for setting the basal level of gene expression but also as a regulatory step. Compared to the mechanism of transcription, much less information is available regarding mRNA degradation machineries. However, in the past several years, various components involved in the mRNA degradation process have been identified in eukaryotes. In particular, progress in the plant field has revealed the involvement of mRNA turnover in a wide variety of developmental processes and hormonal responses. Here, we provide an overview of machineries involved in general mRNA degradation and mRNA surveillance systems in plants.


Plant Science | 2013

The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi

Yosuke Maruyama; Natsuko Yamoto; Yuya Suzuki; Yukako Chiba; Ken-ichi Yamazaki; Takeo Sato; Junji Yamaguchi

Complex plant defenses that include the hypersensitive response (HR) are mediated by plant hormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene. We previously isolated the Arabidopsis DEAR1 (DREB AND EAR MOTIF PROTEIN 1) regulator and showed that its overexpression DEAR1 (DEAR1ox) resulted in a dwarf phenotype and lesion-like cell death, accompanied by elevated expression of PR (PATHOGENESIS-RELATED) genes. Here, we show that transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) has enhanced resistance to the necrotrophic fungus Botrytis cinerea (B. cinerea). This result indicates that DEAR1 represses negative regulators of plant defense responses, including transcriptional repressors belonging to the ERF (ETHYLEN RESPONSE FACTOR) family. Knockout mutants of ERF9 (erf9), which were down-regulated in DEAR1ox plants, showed transcriptional promotion of PDF1.2 (PATHOGEN-INDUCIBLE PLANT DEFENSIN) genes, which serve as positive markers for the ethylene/jasmonic acid (JA) signaling pathway and provide enhanced resistance to B. cinerea. Biochemical assays demonstrated that the ERF9 in capable of binding to the GCC box, a cis-element contained in the promoters of the PDF1.2 gene that possesses trans-repression activity. Moreover, infection with B. cinerea resulted in the promotion of the PDF1.2 expression, coinciding with suppression of the ERF9 gene under the control of the DEAR1 gene. These results indicate that the transcriptional repressor ERF9 participates in plant defense mechanisms against necrotic fungi mediated by the DEAR1-dependent ethylene/JA signaling pathway.


Plant Molecular Biology | 2012

The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response

Shugo Maekawa; Takeo Sato; Yutaka Asada; Shigetaka Yasuda; Midori Yoshida; Yukako Chiba; Junji Yamaguchi

In higher plants, the metabolism of carbon (C) and nitrogen nutrients (N) is mutually regulated and referred to as the C and N balance (C/N). Plants are thus able to optimize their growth depending on their cellular C/N status. Arabidopsis ATL31 and ATL6 encode a RING-type ubiquitin ligases which play a critical role in the C/N status response (Sato et al. in Plant J 60:852–864, 2009). Since many ATL members are involved in the plant defense response, the present study evaluated whether the C/N response regulators ATL31 and ATL6 are involved in defense responses. Our results confirmed that ATL31 and ATL6 expression is up-regulated with the microbe-associated molecular patterns elicitors flg22 and chitin as well as with infections with Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000). Moreover, transgenic plants overexpressing ATL31 and ATL6 displayed increased resistance to Pst. DC3000. In accordance with these data, loss of ATL31 and ATL6 function in an atl31 atl6 double knockout mutant resulted in reduced resistance to Pst. DC3000. In addition, the molecular cross-talk between C/N and the defense response was investigated by mining public databases. The analysis identified the transcription factors MYB51 and WRKY33, which are involved in the defense response, and their transcripts levels correlate closely with ATL31 and ATL6. Further study demonstrated that the expression of ATL31, ATL6 and defense marker genes including MYB51 and WRKY33 were regulated by C/N conditions. Taken together, these results indicate that ATL31 and ATL6 function as key components of both C/N regulation and the defense response in Arabidopsis.


Plant and Cell Physiology | 2013

Changes in mRNA Stability Associated with Cold Stress in Arabidopsis Cells

Yukako Chiba; Katsuhiko Mineta; Masami Yokota Hirai; Yuya Suzuki; Shigehiko Kanaya; Hiro Takahashi; Hitoshi Onouchi; Junji Yamaguchi; Satoshi Naito

Control of mRNA half-life is a powerful strategy to adjust individual mRNA levels to various stress conditions, because the mRNA degradation rate controls not only the steady-state mRNA level but also the transition speed of mRNA levels. Here, we analyzed mRNA half-life changes in response to cold stress in Arabidopsis cells using genome-wide analysis, in which mRNA half-life measurements and transcriptome analysis were combined. Half-lives of average transcripts were determined to be elongated under cold conditions. Taking this general shift into account, we identified more than a thousand transcripts that were classified as relatively stabilized or relatively destabilized. The relatively stabilized class was predominantly observed in functional categories that included various regulators involved in transcriptional, post-transcriptional and post-translational processes. On the other hand, the relatively destabilized class was enriched in categories related to stress and hormonal response proteins, supporting the idea that rapid decay of mRNA is advantageous for swift responses to stress. In addition, pentatricopeptide repeat, cyclin-like F-box and Myb transcription factor protein families were significantly over-represented in the relatively destabilized class. The global analysis presented here demonstrates not only the importance of mRNA turnover control in the cold stress response but also several structural characteristics that might be important in the control of mRNA stability.

Collaboration


Dive into the Yukako Chiba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge