Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Aoyama is active.

Publication


Featured researches published by Yuki Aoyama.


Behavioural Brain Research | 2013

Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse

Akira Nakajima; Yuki Aoyama; Thuy-Ty Lan Nguyen; Eun-Joo Shin; Hyoung-Chun Kim; Shinnosuke Yamada; Tsuyoshi Nakai; Taku Nagai; Akihito Yokosuka; Yoshihiro Mimaki; Yasushi Ohizumi; Kiyofumi Yamada

Senescence-accelerated mouse prone 8 (SAMP8) is a model of aging characterized by the early onset of learning and memory impairment and various pathological features of Alzheimers disease (AD). Our recent studies have demonstrated that nobiletin, a polymethoxylated flavone from citrus peels, ameliorates learning and memory impairment in olfactory-bulbectomized mice, amyloid precursor protein transgenic mice, and NMDA receptor antagonist-treated mice. Here, we present evidence that this natural compound improves age-related cognitive impairment and reduces oxidative stress and tau phosphorylation in SAMP8 mice. Treatment with nobiletin (10 or 50mg/kg) reversed the impairment of recognition memory and context-dependent fear memory in SAMP8 mice. Treatment with nobiletin also restored the decrease in the GSH/GSSG ratio in the brain of SAMP8 mice. In addition, increases in glutathione peroxidase and manganese-superoxide dismutase activities, as well as a decrease in protein carbonyl level, were observed in the brain of nobiletin-treated SAMP8 mice. Furthermore, nobiletin reduced tau phosphorylation in the hippocampus of SAMP8 mice. Together, the markedly beneficial effects of nobiletin represent a potentially useful treatment for ameliorating the learning and memory deficits, oxidative stress, and hyperphosphorylation of tau in aging as well as age-related neurodegenerative diseases such as AD.


Behavioural Brain Research | 2015

Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer's disease (3XTg-AD)

Akira Nakajima; Yuki Aoyama; Eun-Joo Shin; Yunsung Nam; Hyoung-Chun Kim; Taku Nagai; Akihito Yokosuka; Yoshihiro Mimaki; Tsuyoshi Yokoi; Yasushi Ohizumi; Kiyofumi Yamada

Alzheimers disease (AD), the most common form of dementia among the elderly, is characterized by the progressive decline of cognitive function. Increasing evidence indicates that the production and accumulation of amyloid β (Aβ), particularly soluble Aβ oligomers, is central to the pathogenesis of AD. Our recent studies have demonstrated that nobiletin, a polymethoxylated flavone from citrus peels, ameliorates learning and memory impairment in olfactory-bulbectomized mice, amyloid precursor protein transgenic mice, NMDA receptor antagonist-treated mice, and senescence-accelerated mouse prone 8. Here, we present evidence that this natural compound improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of AD (3XTg-AD) that progressively develops amyloid plaques, neurofibrillary tangles, and cognitive impairments. Treatment with nobiletin (30 mg/kg) for 3 months reversed the impairment of short-term memory and recognition memory in 3XTg-AD mice. Our ELISA analysis also showed that nobiletin reduced the levels of soluble Aβ1-40 in the brain of 3XTg-AD mice. Furthermore, nobiletin reduced ROS levels in the hippocampus of 3XTg-AD as well as wild-type mice. These results suggest that this natural compound has potential to become a novel drug for the treatment and prevention of AD.


The International Journal of Neuropsychopharmacology | 2012

Exposure to enriched environments during adolescence prevents abnormal behaviours associated with histone deacetylation in phencyclidine-treated mice

Takenao Koseki; Akihiro Mouri; Takayoshi Mamiya; Yuki Aoyama; Kazuya Toriumi; Shizuka Suzuki; Azusa Nakajima; Takuma Yamada; Taku Nagai; Toshitaka Nabeshima

Enriched environments (EEs) during development have been shown to influence adult behaviour. Environmental conditions during childhood may contribute to the onset and/or pathology of schizophrenia; however, it remains unclear whether EE might prevent the development of schizophrenia. Herein, we investigated the effects of EE during adolescence on phencyclidine (PCP)-induced abnormal behaviour, a proposed schizophrenic endophenotype. Male ICR mice (3 wk old) were exposed to an EE for 4 wk and then treated with PCP for 2 wk. The EE potentiated the acute PCP treatment-induced hyperlocomotion in the locomotor test and prevented chronic PCP treatment-induced impairments of social behaviour and recognition memory in the social interaction and novel object recognition tests. It also prevented the PCP-induced decrease of acetylated Lys9 in histone H3-positive cells and increase of the histone deacetylase (HDAC)5 level in the prefrontal cortex. To investigate whether the histone modification during adolescence might be critical for the effect of EE, 3-wk-old mice were first treated with sodium butyrate (SB; an HDAC inhibitor) for 4 wk and then treated with PCP for 2 wk. Chronic SB treatment during adolescence mimicked the effects of EE, including potentiation of hyperlocomotion induced by acute PCP treatment and prevention of social and cognitive impairments, decrease of acetylated Lys9 in histone H3-positive cells and increase of the HDAC5 level in the prefrontal cortex associated with chronic PCP treatment. Our results suggest that EEs prevent PCP-induced abnormal behaviour associated with histone deacetylation. EEs during childhood might prove to be a novel strategy for prophylaxis against schizophrenia.


Behavioural Brain Research | 2011

Evaluation of object-based attention in mice

Tursun Alkam; Masayuki Hiramatsu; Takayoshi Mamiya; Yuki Aoyama; Atsumi Nitta; Kiyofumi Yamada; Hyoung-Chun Kim; Toshitaka Nabeshima

The deficits of attention result in significant impairment in daily life, and pharmacological intervention to improve attention is the most effective treatment in clinics. However, methods which are suitable for the large scale preclinical screening of attention-improving compounds or drugs are few in the field. In this study, we have developed object-based attention task as a simple and wherever-practical method that suitable for quick drug screening in mice. Treatment with p-chlorophenylalanine (pCPA) (200mg/kg/day, i.p.) for three consecutive days reduced the prefrontal cortical content of serotonin and dopamine, and increased turn-over of dopamine while decreasing turn-over of norepinephrine in the prefrontal cortex on day 7. Auditory attention and working memory, but not long-term object memory after a long (10 min) object (two objects)-exposure period, were impaired on day 7 after the same treatment paradigm with pCPA. Novel object recognition ability immediately (<10s) after a short (3 min) object (on two objects)-exposure period was not impaired after pCPA treatment. However, novel object recognition ability immediately (<10s) after a short (3 min), but not long (6 min), object (five objects)-exposure period was impaired after pCPA treatment. For the verification, the current task, the object-based attention task, was confirmed in an attention deficit model induced by acute phencyclidine (1mg/kg, i.p.) treatment in mice. It was implied that the object-based attention task would assist the behavioral screening process of pharmacological studies on attention-improving drugs.


Neuropsychopharmacology | 2012

Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex

Kazuya Toriumi; Akihiro Mouri; Shiho Narusawa; Yuki Aoyama; Natsumi Ikawa; Lingling Lu; Taku Nagai; Takayoshi Mamiya; Hyoung-Chun Kim; Toshitaka Nabeshima

N-methyl-D-aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression.


The International Journal of Neuropsychopharmacology | 2014

Clozapine ameliorates epigenetic and behavioral abnormalities induced by phencyclidine through activation of dopamine D1 receptor.

Yuki Aoyama; Akihiro Mouri; Kazuya Toriumi; Takenao Koseki; Shiho Narusawa; Natsumi Ikawa; Takayoshi Mamiya; Taku Nagai; Kiyofumi Yamada; Toshitaka Nabeshima

Accumulating evidence suggests that dysregulation of histone modification is involved in the pathogenesis and/or pathophysiology of psychiatric disorders. However, the abnormalities in histone modification in the animal model of schizophrenia and the efficacy of antipsychotics for such abnormalities remain unclear. Here, we investigated the involvement of histone modification in phencyclidine-induced behavioral abnormalities and the effects of antipsychotics on these abnormalities. After repeated phencyclidine (10 mg/kg) treatment for 14 consecutive days, mice were treated with antipsychotics (clozapine or haloperidol) or the histone deacetylase inhibitor sodium butyrate for 7 d. Repeated phencyclidine treatments induced memory impairment and social deficit in the mice. The acetylation of histone H3 at lysine 9 residues decreased in the prefrontal cortex with phencyclidine treatment, whereas the expression level of histone deacetylase 5 increased. In addition, the phosphorylation of Ca²⁺/calmodulin-dependent protein kinase II in the nucleus decreased in the prefrontal cortex of phencyclidine-treated mice. These behavioral and epigenetic changes in phencyclidine-treated mice were attenuated by clozapine and sodium butyrate but not by haloperidol. The dopamine D1 receptor antagonist SCH-23390 blocked the ameliorating effects of clozapine but not of sodium butyrate. Furthermore, clozapine and sodium butyrate attenuated the decrease in expression level of GABAergic system-related genes in the prefrontal cortex of phencyclidine-treated mice. These findings suggest that the antipsychotic effect of clozapine develops, at least in part, through epigenetic modification by activation of the dopamine D1 receptor in the prefrontal cortex.


Behavioural Brain Research | 2013

Evaluation of emotional behaviors in young offspring of C57BL/6J mice after gestational and/or perinatal exposure to nicotine in six different time-windows.

Tursun Alkam; Hyoung-Chun Kim; Masayuki Hiramatsu; Takayoshi Mamiya; Yuki Aoyama; Atsumi Nitta; Kiyofumi Yamada; Toshitaka Nabeshima

Nicotine replacement treatments are being alternatively applied as an aid to smoking cessation during pregnancy. However, the effects of nicotine exposed at the prenatal stage on the emotional behaviors in offspring are not well understood due to the lack of systematic investigations. The current study has therefore initially aimed to evaluate emotional behaviors in young mouse offspring (postnatal day 28-36) which experienced gestational and/or perinatal nicotine exposure (GPNE) in six different time-windows. Pregnant C57BL/6J mice were exposed to nicotine via sweetened (2% sucrose) drinking water during 6 different time-windows including gestational day 0-day 13 (G0-G13), G14-perinatal day 0 (P0), G0-P0, G14-P7, G0-P7, and P0-P7. During P28-P36 days, both male and female offspring were given a battery of behavioral tests including light and dark box test, marble burying behavior test, novelty-suppressed feeding test, sociability and social novelty preference test, social avoidance tube test, and elevated plus maze test. GPNE during G0-P0, G14-P0, G14-P7, and G0-P7 induced abnormal behaviors in male and female offspring to different extent. Results indicated that nicotine at any time points of gestational and/or perinatal period impairs emotional behaviors in offspring, and suggested certain time-windows for further neurochemical or molecular studies in relation with GPNE-induced emotional abnormalities.


Neuropsychopharmacology | 2016

Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex

Yuki Aoyama; Kazuya Toriumi; Akihiro Mouri; Tomoya Hattori; Eriko Ueda; Akane Shimato; Nami Sakakibara; Yuka Soh; Takayoshi Mamiya; Taku Nagai; Hyoung-Chun Kim; Masayuki Hiramatsu; Toshitaka Nabeshima; Kiyofumi Yamada

Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2′-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring.


Neuroscience | 2017

Exposure to diphtheria toxin during the juvenile period impairs both inner and outer hair cells in C57BL/6 mice

Hiroyuki Konishi; Nobutaka Ohgami; Aika Matsushita; Yuki Kondo; Yuki Aoyama; Masaaki Kobayashi; Taku Nagai; Shinya Ugawa; Kiyofumi Yamada; Masashi Kato; Hiroshi Kiyama

Diphtheria toxin (DT) administration into transgenic mice that express the DT receptor (DTR) under control of specific promoters is often used for cell ablation studies in vivo. Because DTR is not expressed in mice, DT injection has been assumed to be nontoxic to cells in vivo. In this study, we demonstrated that DT application during the juvenile stage leads to hearing loss in wild-type mice. Auditory brainstem response measurement showed severe hearing loss in C57BL/6 mice administered DT during the juvenile period, and the hearing loss persisted into adulthood. However, ototoxicity did not occur when DT was applied on postnatal day 28 or later. Histological studies demonstrated that hearing loss was accompanied by significant degeneration of inner and outer hair cells (HCs), as well as spiral ganglion neurons. Scanning electron microscopy showed quick degeneration of inner HCs within 3days and gradual degeneration of outer HCs within 1week. These results demonstrated that DT has ototoxic action on C57BL/6 mice during the juvenile period, but not thereafter, and the hearing loss was due to degeneration of inner and outer HCs by unknown DT-related mechanisms.


Scientific Reports | 2018

Genetic and animal model analyses reveal the pathogenic role of a novel deletion of RELN in schizophrenia

Akira Sobue; Itaru Kushima; Taku Nagai; Wei Shan; Takao Kohno; Branko Aleksic; Yuki Aoyama; Daisuke Mori; Yuko Arioka; Naoko Kawano; Maeri Yamamoto; Mitsuharu Hattori; Toshitaka Nabeshima; Kiyofumi Yamada; Norio Ozaki

Reelin protein (RELN), an extracellular matrix protein, plays multiple roles that range from embryonic neuronal migration to spine formation in the adult brain. Results from genetic studies have suggested that RELN is associated with the risk of psychiatric disorders, including schizophrenia (SCZ). We previously identified a novel exonic deletion of RELN in a patient with SCZ. High-resolution copy number variation analysis revealed that this deletion included exons 52 to 58, which truncated the RELN in a similar manner to the Reln Orleans mutation (Relnrl-Orl). We examined the clinical features of this patient and confirmed a decreased serum level of RELN. To elucidate the pathophysiological role of the exonic deletion of RELN in SCZ, we conducted behavioral and neurochemical analyses using heterozygous Relnrl-Orl/+ mice. These mice exhibited abnormalities in anxiety, social behavior, and motor learning; the deficits in motor learning were ameliorated by antipsychotics. Methamphetamine-induced hyperactivity and dopamine release were significantly reduced in the Relnrl-Orl/+ mice. In addition, the levels of GABAergic markers were decreased in the brain of these mice. Taken together, our results suggest that the exonic deletion of RELN plays a pathological role, implicating functional changes in the dopaminergic and GABAergic systems, in the pathophysiology of SCZ.

Collaboration


Dive into the Yuki Aoyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyoung-Chun Kim

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge