Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Izawa-Ishizawa is active.

Publication


Featured researches published by Yuki Izawa-Ishizawa.


PLOS ONE | 2012

Estrogen Regulates Hepcidin Expression via GPR30-BMP6-Dependent Signaling in Hepatocytes

Yasumasa Ikeda; Soichiro Tajima; Yuki Izawa-Ishizawa; Yoshitaka Kihira; Keisuke Ishizawa; Shuhei Tomita; Koichiro Tsuchiya; Toshiaki Tamaki

Hepcidin, a liver-derived iron regulatory protein, plays a crucial role in iron metabolism. It is known that gender differences exist with respect to iron storage in the body; however, the effects of sex steroid hormones on iron metabolism are not completely understood. We focused on the effects of the female sex hormone estrogen on hepcidin expression. First, ovariectomized (OVX) and sham-operated mice were employed to investigate the effects of estrogen on hepcidin expression in an in vivo study. Hepcidin expression was decreased in the livers of OVX mice compared to the sham-operated mice. In OVX mice, bone morphologic protein-6 (BMP6), a regulator of hepcidin, was also found to be downregulated in the liver, whereas ferroportin (FPN), an iron export protein, was upregulated in the duodenum. Both serum and liver iron concentrations were elevated in OVX mice relative to their concentrations in sham-operated mice. In in vitro studies, 17β-estradiol (E2) increased the mRNA expression of hepcidin in HepG2 cells in a concentration-dependent manner. E2-induced hepatic hepcidin upregulation was not inhibited by ICI 182720, an inhibitor of the estrogen receptor; instead, hepcidin expression was increased by ICI 182720. E2 and ICI 182720 exhibit agonist actions with G-protein coupled receptor 30 (GPR30), the 7-transmembrane estrogen receptor. G1, a GPR30 agonist, upregulated hepcidin expression, and GPR30 siRNA treatment abolished E2-induced hepcidin expression. BMP6 expression induced by E2 was abolished by GPR30 silencing. Finally, both E2 and G1 supplementation restored reduced hepatic hepcidin and BMP6 expression and reversed the augmentation of duodenal FPN expression in the OVX mice. In contrast, serum hepcidin was elevated in OVX mice, which was reversed in these mice with E2 and G1. Thus, estrogen is involved in hepcidin expression via a GPR30-BMP6-dependent mechanism, providing new insight into the role of estrogen in iron metabolism.


Hypertension Research | 2009

Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal-regulated kinase 1/2 activation, but not Akt in vascular smooth muscle cells.

Yuki Motobayashi; Yuki Izawa-Ishizawa; Keisuke Ishizawa; Sakiko Orino; Kunihisa Yamaguchi; Kazuyoshi Kawazoe; Shuichi Hamano; Koichiro Tsuchiya; Shuhei Tomita; Toshiaki Tamaki

Adiponectin, an adipocyte-derived hormone, has been proposed to show antiatherogenic properties through the inhibitory effects against various growth factors. Insulin-like growth factor-1 (IGF-1) is one of the potent mitogens, which has been considered to play important roles in both atherogenesis and plaque stabilization in accordance to the phase of atherosclerosis. The aim of this study is to elucidate the adiponectin effects on IGF-1-induced cell migration and its intracellular signaling pathways in vascular smooth muscle cells (VSMCs). In this study, we assessed cell migration and several kinase activities in cultured rat aortic smooth muscle cells (RASMCs). Adiponectin pretreatment suppressed IGF-1-induced cell migration and extracellular signal-regulated kinase (ERK)1/2 activation, which is one of the major mediators for IGF-1-induced cell migration. In RASMCs, adiponectin and 5-aminoimidazole-4-carboxamide riboside (AICAR), a 5′-AMP-activated protein kinase (AMPK) activator, stimulated AMPK activation. AMPK activation by AICAR inhibited IGF-1-induced ERK1/2 activation and cell migration in RASMCs. On the other hand, phosphorylation of Akt and Bad, proapoptotic molecules of the Bcl-2 family, which were increased by IGF-1 stimulation, was not diminished by the pretreatment with adiponectin. It was shown that adiponectin inhibited IGF-1-induced VSMC migration through suppression of ERK1/2 activation, which might be implicated in AMPK activation. Furthermore, adiponectin selectively inhibited ERK1/2 pathway, not Akt–Bad pathway, stimulated by IGF-1. From these findings, it was implied that adiponectin suppressed IGF-1-induced VSMC migration and its signaling selectivity.


Cardiovascular Research | 2014

Smooth muscle cell-specific Hif-1α deficiency suppresses angiotensin II-induced vascular remodelling in mice

Masaki Imanishi; Shuhei Tomita; Keisuke Ishizawa; Yoshitaka Kihira; Masaki Ueno; Yuki Izawa-Ishizawa; Yasumasa Ikeda; Noriko Yamano; Koichiro Tsuchiya; Toshiaki Tamaki

AIM Vascular remodelling is mediated by vascular smooth muscle cell (VSMC) proliferation and hypertrophy, both processes of which are linked to medial thickening and fibrosis. Here, we show that hypoxia-inducible factor-1α (Hif-1α) expressed in smooth muscle cells (SMCs) is involved in angiotensin II (Ang II)-induced vascular remodelling in an in vivo model. METHODS AND RESULTS To clarify the role of Hif-1α in vascular remodelling, we created mice lacking the Hif-1α gene in SMCs (SMKO mice). Ang II infusion induced medial thickening and vascular fibrosis, accompanied by Hif-1α up-regulation, in the aortae of control mice, but not in those of SMKO mice. In accordance with those results, our in vitro studies showed that the deletion of SMC-derived Hif-1α suppressed the Ang II-induced hypertrophy of VSMCs, and our in vivo studies showed that the Ang II-induced expression of fibrosis-related genes in aortae was suppressed by SMC-specific Hif-1α deficiency. In addition, the SMC-specific Hif-1α deficiency suppressed Ang II-induced macrophage infiltration and Ang II-induced expression of inflammation-related genes in aortae. The superoxide production observed in the aortae of control mice with Ang II was suppressed in those of SMKO mice with Ang II, and this finding was consistent with the results of little Ang II-induced c-Src phosphorylation in SMKO mouse aortae. Loss- and gain-of-function analysis in in vitro experiments confirmed that VSMC-derived Hif-1α functions as an intrinsic modulator of vascular remodelling-related gene expression. CONCLUSION Our results revealed that SMC-derived Hif-1α is a crucial mediator of Ang II-induced vascular remodelling.


PLOS ONE | 2014

Iron Chelation by Deferoxamine Prevents Renal Interstitial Fibrosis in Mice with Unilateral Ureteral Obstruction

Yasumasa Ikeda; Iori Ozono; Soichiro Tajima; Mizuki Imao; Yuya Horinouchi; Yuki Izawa-Ishizawa; Yoshitaka Kihira; Licht Miyamoto; Keisuke Ishizawa; Koichiro Tsuchiya; Toshiaki Tamaki

Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases (CKD). Although several mechanisms underlying renal fibrosis and candidate drugs for its treatment have been identified, the effect of iron chelator on renal fibrosis remains unclear. In the present study, we examined the effect of an iron chelator, deferoxamine (DFO), on renal fibrosis in mice with surgically induced unilateral ureter obstruction (UUO). Mice were divided into 4 groups: UUO with vehicle, UUO with DFO, sham with vehicle, and sham with DFO. One week after surgery, augmented renal tubulointerstitial fibrosis and the expression of collagen I, III, and IV increased in mice with UUO; these changes were suppressed by DFO treatment. Similarly, UUO-induced macrophage infiltration of renal interstitial tubules was reduced in UUO mice treated with DFO. UUO-induced expression of inflammatory cytokines and extracellular matrix proteins was abrogated by DFO treatment. DFO inhibited the activation of the transforming growth factor-β1 (TGF-β1)-Smad3 pathway in UUO mice. UUO-induced NADPH oxidase activity and p22phox expression were attenuated by DFO. In the kidneys of UUO mice, divalent metal transporter 1, ferroportin, and ferritin expression was higher and transferrin receptor expression was lower than in sham-operated mice. Increased renal iron content was observed in UUO mice, which was reduced by DFO treatment. These results suggest that iron reduction by DFO prevents renal tubulointerstitial fibrosis by regulating TGF-β-Smad signaling, oxidative stress, and inflammatory responses.


Journal of Immunology | 2014

Identification of Activators of ERK5 Transcriptional Activity by High-Throughput Screening and the Role of Endothelial ERK5 in Vasoprotective Effects Induced by Statins and Antimalarial Agents

Nhat Tu Le; Yuichiro Takei; Yuki Izawa-Ishizawa; Kyung Sun Heo; Hakjoo Lee; Alan V. Smrcka; Benjamin L. Miller; Kyung Ae Ko; Sara Ture; Craig N. Morrell; Keigi Fujiwara; Masashi Akaike; Jun Ichi Abe

Because ERK5 inhibits endothelial inflammation and dysfunction, activating ERK5 might be a novel approach to protecting vascular endothelial cells (ECs) against various pathological conditions of the blood vessel. We have identified small molecules that protect ECs via ERK5 activation and determined their contribution to preventing cardiac allograft rejection. Using high-throughput screening, we identified certain statins and antimalarial agents including chloroquine, hydroxychloroquine, and quinacrine as strong ERK5 activators. Pitavastatin enhanced ERK5 transcriptional activity and Kruppel-like factor-2 expression in cultured human and bovine ECs, but these effects were abolished by the depletion of ERK5. Chloroquine and hydroxychloroquine upregulated ERK5 kinase activity and inhibited VCAM-1 expression in an ERK5-dependent but MAPK/ERK kinase 5– and Kruppel-like factor 2/4–independent manner. Leukocyte rolling and vascular reactivity were used to evaluate endothelial function in vivo, and we found that EC-specific ERK5 knockout (ERK5-EKO) mice exhibited increased leukocyte rolling and impaired vascular reactivity, which could not be corrected by pitavastatin. The role of endothelial ERK5 in acute cardiac allograft rejection was also examined by heterotopic grafting of the heart obtained from either wild-type or ERK5-EKO mice into allomismatched recipient mice. A robust increase in both inflammatory gene expression and CD45-positive cell infiltration into the graft was observed. These tissue rejection responses were inhibited by pitavastatin in wild-type but not ERK5-EKO hearts. Our study has identified statins and antimalarial drugs as strong ERK5 activators and shown that ERK5 activation is preventive of endothelial inflammation and dysfunction and acute allograft rejection.


The International Journal of Biochemistry & Cell Biology | 2011

Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1α in adipocytes.

Yoshitaka Kihira; Noriko Yamano; Yuki Izawa-Ishizawa; Keisuke Ishizawa; Yasumasa Ikeda; Koichiro Tsuchiya; Toshiaki Tamaki; Shuhei Tomita

Hypoxia-inducible factor-1α (HIF-1α), which is a transcription factor that enhances glycolysis in cells in response to hypoxia, is induced in hypertrophied adipocytes in obesity. Recent studies have shown that growth factors are able to induce HIF-1α by mechanisms independent of hypoxia. Since basic fibroblast growth factor (bFGF), an angiogenic factor, is concentrated in expanding adipose tissue, the possible effects of bFGF on regulation of HIF-1α in adipocytes were investigated. Treatment of differentiated 3T3-L1 adipocytes with bFGF induced HIF-1α. Concomitantly, glucose transporter 1 (GLUT1), which is a target gene of HIF-1α, was induced at both mRNA and protein levels and was translocated to the plasma membrane. A chromatin immunoprecipitation assay and an RNA interference study indicated that bFGF-induced HIF-1α directly upregulates GLUT1. In addition, it was observed that bFGF increases lactate production of adipocytes. This result indicates that bFGF reprograms the metabolism toward glycolysis. Intraperitoneal injection of bFGF into mice upregulated HIF-1α and GLUT1 in adipose tissues, suggesting that bFGF regulates the metabolism of adipocytes via HIF-1α-GLUT1 regulation in vivo. We also found that bFGF inhibits insulin-induced phosphorylation of insulin receptor substrate-1 and Akt, suggesting that bFGF attenuates the insulin signal in adipocytes. Taken together, the findings suggest that bFGF has a harmful effect on the development of type 2 diabetes through metabolism reprogramming and attenuation of the insulin signal.


PLOS ONE | 2014

Deletion of Hypoxia-Inducible Factor-1α in Adipocytes Enhances Glucagon-Like Peptide-1 Secretion and Reduces Adipose Tissue Inflammation

Yoshitaka Kihira; Mariko Miyake; Manami Hirata; Yoji Hoshina; Kana Kato; Hitoshi Shirakawa; Hiroshi Sakaue; Noriko Yamano; Yuki Izawa-Ishizawa; Keisuke Ishizawa; Yasumasa Ikeda; Koichiro Tsuchiya; Toshiaki Tamaki; Shuhei Tomita

It is known that obese adipose tissues are hypoxic and express hypoxia-inducible factor (HIF)-1α. Although some studies have shown that the expression of HIF-1α in adipocytes induces glucose intolerance, the mechanisms are still not clear. In this study, we examined its effects on the development of type 2 diabetes by using adipocyte-specific HIF-1α knockout (ahKO) mice. ahKO mice showed improved glucose tolerance compared with wild type (WT) mice. Macrophage infiltration and mRNA levels of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor α (TNFα) were decreased in the epididymal adipose tissues of high fat diet induced obese ahKO mice. The results indicated that the obesity-induced adipose tissue inflammation was suppressed in ahKO mice. In addition, in the ahKO mice, serum insulin levels were increased under the free-feeding but not the fasting condition, indicating that postprandial insulin secretion was enhanced. Serum glucagon-like peptide-1 (GLP-1) levels were also increased in the ahKO mice. Interestingly, adiponectin, whose serum levels were increased in the obese ahKO mice compared with the obese WT mice, stimulated GLP-1 secretion from cultured intestinal L cells. Therefore, insulin secretion may have been enhanced through the adiponectin-GLP-1 pathway in the ahKO mice. Our results suggest that the deletion of HIF-1α in adipocytes improves glucose tolerance by enhancing insulin secretion through the GLP-1 pathway and by reducing macrophage infiltration and inflammation in adipose tissue.


American Journal of Physiology-renal Physiology | 2013

Dietary iron restriction inhibits progression of diabetic nephropathy in db/db mice

Yasumasa Ikeda; Hideaki Enomoto; Soichiro Tajima; Yuki Izawa-Ishizawa; Yoshitaka Kihira; Keisuke Ishizawa; Shuhei Tomita; Koichiro Tsuchiya; Toshiaki Tamaki

Excess iron causes oxidative stress through hydroxyl-radical production via Fenton/Haber-Weiss reactions. Recently, body iron reduction has been found to ameliorate diabetes. In the present study, we examined the protective effect of dietary iron restriction against diabetic nephropathy in the db/db mouse model of diabetic nephropathy using db/m mice as controls. The db/db mice were divided into two groups and fed a normal diet (ND) or a low-iron diet (LID). Increasing urinary albumin excretion was observed in the ND db/db mice, but this was suppressed in db/db mice with LID. Histologically, the db/db mice in the ND group had increased glomerular volume and mesangial area compared with the LID group. Augmented deposition of extracellular matrixes was decreased in db/db mice with LID. In terms of oxidative stress, increased superoxide production observed in the kidneys of the ND db/db mice was diminished in the LID group. NADPH oxidase activity and renal expression of NADPH oxidase components p22(phox) and NADPH oxidase 4 (NOX4) were augmented in the ND group, and this was abolished by LID. There were no differences in expression of renal iron importers, transferrin receptor, or divalent metal transporter-1 between db/m mice and db/db mice. The level of ferroportin, an iron exporter, increased in the kidneys of the db/db mice. Urinary iron excretion was significantly higher in ND db/db mice and was reduced in the LID group. These findings suggest that dietary iron restriction exerts a preventive effect on the progression of diabetic nephropathy partly due to the reduction of oxidative stress.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Role of Hypoxia-Inducible Factor 1α in T Cells as a Negative Regulator in Development of Vascular Remodeling

Hirotsugu Kurobe; Masahisa Urata; Masaki Ueno; Masaaki Ueki; Shiro Ono; Yuki Izawa-Ishizawa; Yayoi Fukuhara; Yu Lei; Adiratna Mat Ripen; Tamotsu Kanbara; Ken-ichi Aihara; Keisuke Ishizawa; Masashi Akaike; Frank J. Gonzalez; Toshiaki Tamaki; Yousuke Takahama; Masanori Yoshizumi; Tetsuya Kitagawa; Shuhei Tomita

Background and Purpose—Recent studies have shown that the cellular immune response in the development of vascular remodeling modulates the resulting pathological alterations. We show that hypoxia-inducible factor 1 (Hif-1) (specifically expressed in T cells) is involved in the immune response to vascular remodeling that accompanies arteriosclerosis. Methods and Results—To study the role of T cells in the development of vascular remodeling, femoral arterial injury induced by an external vascular polyethylene cuff was examined in mice lacking Hif-1 (specifically in T cells). We found that cuff placement caused prominent neointimal hyperplasia of the femoral artery in Hif-1– (T-cell)–deficient mice compared with that in control mice and that infiltration of inflammatory cells at the adventitia was markedly increased in the mutant mice. Studies to clarify the mechanism of augmented vascular remodeling in the mutant mice showed enhanced production of cytokines by activated T cells and augmented antibody production in response to a T-dependent antigen in the mutant mice. Conclusions—The results of this study revealed that Hif-1&agr; in T cells plays a crucial role in vascular inflammation and remodeling in response to cuff injury as a negative regulator of T cell–mediated immune response. Potential new therapeutic strategies that target Hif-1&agr; are described.


Journal of Biological Chemistry | 2012

Heparin cofactor II, a serine protease inhibitor, promotes angiogenesis via activation of the AMP-activated protein kinase-endothelial nitric-oxide synthase signaling pathway.

Yasumasa Ikeda; Ken-ichi Aihara; Sumiko Yoshida; Takashi Iwase; Soichiro Tajima; Yuki Izawa-Ishizawa; Yoshitaka Kihira; Keisuke Ishizawa; Shuhei Tomita; Koichiro Tsuchiya; Masataka Sata; Masashi Akaike; Shigeaki Kato; Toshio Matsumoto; Toshiaki Tamaki

Background: Heparin cofactor II (HCII), a serine protease inhibitor, exerts protective actions against cardiovascular remodeling. Results: HCII-deficient mice manifested insufficient recovery of peripheral circulation after hindlimb ischemia with inactivation of vascular endothelial AMPK and eNOS. Conclusion: HCII promotes angiogenesis in response to ischemia via the AMPK-eNOS-dependent pathway. Significance: HCII might be a novel therapeutic target in patients with peripheral arterial disease. We previously clarified that heparin cofactor II (HCII), a serine proteinase inhibitor, exerts various protective actions on cardiovascular diseases in both experimental and clinical studies. In the present study, we aimed to clarify whether HCII participates in the regulation of angiogenesis. Male heterozygous HCII-deficient (HCII+/−) mice and male littermate wild-type (HCII+/+) mice at the age of 12–16 weeks were subjected to unilateral hindlimb ligation surgery. Laser speckle blood flow analysis showed that blood flow recovery in response to hindlimb ischemia was delayed in HCII+/− mice compared with that in HCII+/+ mice. Capillary number, arteriole number, and endothelial nitric-oxide synthase (eNOS), AMP-activated protein kinase (AMPK), and liver kinase B1 (LKB1) phosphorylation in ischemic muscles were decreased in HCII+/− mice. Human purified HCII (h-HCII) administration almost restored blood flow recovery, capillary density, and arteriole number as well as phosphorylation levels of eNOS, AMPK, and LKB1 in ischemic muscles of HCII+/− mice. Although treatment with h-HCII increased phosphorylation levels of eNOS, AMPK, and LKB1 in human aortic endothelial cells (HAECs), the h-HCII-induced eNOS phosphorylation was abolished by compound C, an AMPK inhibitor, and by AMPK siRNA. In a similar fashion, tube formation, proliferation, and migration of HAECs were also promoted by h-HCII treatment and were abrogated by pretreatment with compound C. HCII potentiates the activation of vascular endothelial cells and the promotion of angiogenesis in response to hindlimb ischemia via an AMPK-eNOS signaling pathway. These findings suggest that HCII is a novel therapeutic target for treatment of patients with peripheral circulation insufficiency.

Collaboration


Dive into the Yuki Izawa-Ishizawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge