Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Miyabe is active.

Publication


Featured researches published by Yuki Miyabe.


Physics in Medicine and Biology | 2010

The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system

Toru Takakura; Takashi Mizowaki; Manabu Nakata; Shinsuke Yano; Takahiro Fujimoto; Yuki Miyabe; Mitsuhiro Nakamura; Masahiro Hiraoka

The aim of this paper is to assess the overall geometric accuracy of the Novalis system using the Robotic Tilt Module in terms of the uncertainty in frameless stereotactic radiotherapy. We analyzed the following three metrics: (1) the correction accuracy of the robotic couch, (2) the uncertainty of the isocenter position with gantry and couch rotation, and (3) the shift in position between the isocenter and central point detected with the ExacTrac x-ray system. Based on the concept of uncertainty, the overall accuracy was calculated from these values. The accuracy in positional correction with the robotic couch was 0.07 +/- 0.22 mm, the positional shift of the isocenter associated with gantry rotation was 0.35 mm, the positional shift of the isocenter associated with couch rotation was 0.38 mm and the difference in position between the isocenter and the ExacTrac x-ray system was 0.30 mm. The accuracy of intracranial stereotactic radiosurgery with the Novalis system in our clinic was 0.31 +/- 0.77 mm. The overall geometric accuracy based on the concept of uncertainty was 0.31 +/- 0.77 mm, which is within the tolerance given in the American Association of Physicists in Medicine report no. 54.


Medical Physics | 2008

Geometrical differences in target volumes between slow CT and 4D CT imaging in stereotactic body radiotherapy for lung tumors in the upper and middle lobe

Mitsuhiro Nakamura; Yuichiro Narita; Yukinori Matsuo; Masaru Narabayashi; Manabu Nakata; Shinsuke Yano; Yuki Miyabe; Kiyotomo Matsugi; Akira Sawada; Yoshiki Norihisa; Takashi Mizowaki; Yasushi Nagata; Masahiro Hiraoka

Since stereotactic body radiotherapy (SBRT) was started for patients with lung tumor in 1998 in our institution, x-ray fluoroscopic examination and slow computed tomography (CT) scan with a rotation time of 4 s have been routinely applied to determine target volumes. When lung tumor motion observed with x-ray fluoroscopy is larger than 8 mm, diaphragm control (DC) is used to reduce tumor motion during respiration. After the installation of a four-dimensional (4D) CT scanner in 2006, 4D CT images have been supplementarily acquired to determine target volumes. It was found that target volumes based on slow CT images were substantially different from those on 4D CT images, even for patients with lung tumor motion no larger than 8 mm. Although slow CT scan might be expected to fare well for lung tumors with motion range of 8 mm or less, the potential limitations of slow CT scan are unknown. The purpose of this study was to evaluate the geometrical differences in target volumes between slow CT and 4D CT imaging for lung tumors with motion range no larger than 8 mm in the upper and middle lobe. Of the patients who underwent SBR between October 2006 and April 2008, 32 patients who had lung tumor with motion range no larger than 8 mm and did not need to use DC were enrolled in this study. Slow CT and 4D CT images were acquired under free breathing for each patient. Target volumes were manually delineated on slow CT images (TV(slow CT)). Gross tumor volumes were also delineated on each of the 4D CT volumes and their union (TV(4D CT)) was constructed. Volumetric and statistical analyses were performed for each patient. The mean +/- standard deviation (S.D.) of TV(slow CT)/TV(4D CT) was 0.75 +/- 0.17 (range, 0.38-1.10). The difference between sizes of TV(slow CT) and TV(4D CT) was not statistically significant (P = 0.096). A mean of 8% volume of TV(slow CT) was not encompassed in TV(4D CT) (mean +/- S.D. = 0.92 +/- 0.07). The patients were separated into two groups to test whether the quality of target delineation on slow CT scans depends on respiratory periods below or above the CT rotation time of 4 s. No significant difference was observed between these groups (P = 0.229). Even lung tumors with motion range no larger than 8 mm might not be accurately depicted on slow CT images. When only a single slow CT scan was used for lung tumors with motion range of 8 mm or less, 95% confidence values for additional margins for TV(slow CT) to encompass TV(4D CT) were 4.0, 5.4, 4.9, 5.1, 1.8, and 1.7 mm for lateral, medial, ventral, dorsal, cranial, and caudal directions, respectively.


Radiotherapy and Oncology | 2014

Evaluation of dynamic tumour tracking radiotherapy with real-time monitoring for lung tumours using a gimbal mounted linac

Yukinori Matsuo; N. Ueki; Kenji Takayama; Mitsuhiro Nakamura; Yuki Miyabe; Yoshitomo Ishihara; Nobutaka Mukumoto; Shinsuke Yano; Hiroaki Tanabe; Shuji Kaneko; Takashi Mizowaki; Hajime Monzen; Akira Sawada; Masaki Kokubo; Masahiro Hiraoka

PURPOSE To evaluate feasibility and acute toxicities after dynamic tumour tracking (DTT) irradiation with real-time monitoring for lung tumours using a gimbal mounted linac. MATERIALS AND METHODS Spherical gold markers were placed around the tumour using a bronchoscope prior to treatment planning. Prescription dose at the isocentre was 56 Gy in 4 fractions for T2a lung cancer and metastatic tumour, and 48 Gy in 4 fractions for the others. Dose-volume metrics were compared between DTT and conventional static irradiation using in-house developed software. RESULTS Of twenty-two patients enrolled, DTT radiotherapy was successfully performed for 16 patients, except 4 patients who coughed out the gold markers, one who showed spontaneous tumour regression, and one where the abdominal wall motion did not correlate with the tumour motion. Dose covering 95% volume of GTV was not different between the two techniques, while normal lung volume receiving 20 Gy or more was reduced by 20%. A mean treatment time per fraction was 36 min using DTT. With a median follow-up period of 13.2 months, no severe toxicity grade 3 or worse was observed. CONCLUSIONS DTT radiotherapy using a gimbal mounted linac was clinically feasible for lung treatment without any severe acute toxicity.


Medical Physics | 2013

Accuracy verification of infrared marker‐based dynamic tumor‐tracking irradiation using the gimbaled x‐ray head of the Vero4DRT (MHI‐TM2000)

Nobutaka Mukumoto; Mitsuhiro Nakamura; Akira Sawada; Yasunobu Suzuki; Kunio Takahashi; Yuki Miyabe; Shuji Kaneko; Takashi Mizowaki; Masaki Kokubo; Masahiro Hiraoka

PURPOSE To verify the accuracy of an infrared (IR) marker-based dynamic tumor-tracking irradiation system (IR tracking) using the gimbaled x-ray head of the Vero4DRT (MHI-TM2000). METHODS The gimbaled 6-MV C-band x-ray head of the Vero4DRT can swing along the pan-and-tilt direction to track a moving target. During beam delivery, the Vero4DRT predicts the future three-dimensional (3D) target position in real time using a correlation model [four-dimensional (4D) model] between the target and IR marker motion, and then continuously transfers the corresponding tracking orientation to the gimbaled x-ray head. The 4D-modeling error (E4DM) and the positional tracking error (EP) were defined as the difference between the predicted and measured positions of the target in 4D modeling and as the difference between the tracked and measured positions of the target during irradiation, respectively. For the clinical application of IR tracking, we assessed the relationship between E4DM and EP for three 1D sinusoidal (peak-to-peak amplitude [A]: 20-40 mm, breathing period [T]: 2-4 s), five 1D phase-shifted sinusoidal (A: 20 mm, T: 4 s, phase shift [τ]: 0.2-2 s), and six 3D patient respiratory patterns. RESULTS The difference between the 95th percentile of the absolute EP (EP (95)) and the mean (μ) + two standard deviations (SD) of absolute E4DM (E4DM (μ+2SD)) was within ± 1 mm for all motion patterns. As the absolute correlation between the target and IR marker motions decreased from 1.0 to 0.1 for the 1D phase-shifted sinusoidal patterns, the E4DM (μ+2SD) and EP (95) increased linearly, from 0.4 to 3.0 mm (R = -0.98) and from 0.5 to 2.2 mm (R = -0.95), respectively. There was a strong positive correlation between E4DM (μ+2SD) and EP (95) in each direction [(lateral, craniocaudal, anteroposterior) = (0.99, 0.98, 1.00)], even for the 3D respiratory patterns; thus, EP (95) was readily estimated from E4DM (μ+2SD). CONCLUSIONS Positional tracking errors correlated strongly with 4D-modeling errors in IR tracking. Thus, the accuracy of the 4D model must be verified before treatment, and margins are required to compensate for the 4D-modeling error.


International Journal of Radiation Oncology Biology Physics | 2009

Measurement of Interfraction Variations in Position and Size of Target Volumes in Stereotactic Body Radiotherapy for Lung Cancer

Kiyotomo Matsugi; Yuichiro Narita; Akira Sawada; Mitsuhiro Nakamura; Yuki Miyabe; Yukinori Matsuo; Masaru Narabayashi; Yoshiki Norihisa; Takashi Mizowaki; Masahiro Hiraoka

PURPOSE To investigate the interfraction variations in volume, motion range, and position of the gross tumor volume (GTV) in hypofractionated stereotactic body radiotherapy (SBRT) for lung cancer using four-dimensional computed tomography. METHODS AND MATERIALS Four-dimensional computed tomography scans were acquired for 8 patients once at treatment planning and twice during the SBRT period using a stereotactic body frame. The image registration was performed to correct setup errors for clinical four-dimensional computed tomography. The interfraction variations in volume, motion range, and position of GTV were computed at end-inhalation (EI) and end-exhalation (EE). RESULTS The random variations in the GTV were 0.59 cm(3) at EI and 0.53 cm(3) at EE, and the systematic variations were 3.04 cm(3) at EI and 3.21 cm(3) at EE. No significant variations in GTV were found during the SBRT sessions (p = .301 at EI and p = .081 at EE). The random variations in GTV motion range for the upper lobe in the craniocaudal direction were within 1.0 mm and for the lower lobe was 3.4 mm. The interfraction variations in the GTV centroid position in the anteroposterior and craniocaudal directions were mostly larger than in the right-left direction; however, no significant displacement was observed among the sessions in any direction. CONCLUSION For patients undergoing hypofractionated SBRT, interfraction variations in GTV, motion range, and position mainly remained small. An additional approach is needed to assess the margin size.


Medical Physics | 2011

Positioning accuracy of a new image-guided radiotherapy system.

Yuki Miyabe; Akira Sawada; Kenji Takayama; Shuji Kaneko; Takashi Mizowaki; Masaki Kokubo; Masahiro Hiraoka

PURPOSE To evaluate the accuracy of the patient-positioning function of a newly developed image-guided radiotherapy system, the MHI-TM2000 (Mitsubishi Heavy Industries, Ltd., Japan). METHODS The isocenter positions prescribed by the lasers, MV treatment beam, and image guidance systems (kV X-ray image and kV-CBCT) were calculated using a cube phantom with a 10-mm-diameter steel ball fixed to the center of the phantom. Then, their location discrepancies were estimated. In addition, to verify the scale and orientation of the coordinate axes of the kV X-ray imaging system, positional measurements were repeated with the phantom placed at 50 mm off-isocenter along the vertical, longitudinal, and lateral directions, respectively. Further, image fusions of an anthropomorphic phantom image and the corresponding image translated by a pre-determined amount were performed. RESULTS The isocenter alignment among the coordinate systems was coincident within 0.5 mm in translation for the vertical, longitudinal, and lateral axes, respectively. The geometrical errors at 50 mm off-isocenter for kV X-ray images and CBCT were within 0.2 mm and 1.0 mm, respectively. The image fusion errors were within 1.0 mm in translation and 1.0 degrees in rotation, respectively. No significant difference in the image fusion accuracy was observed between the chest and pelvis phantoms. CONCLUSIONS The isocenter alignment among the coordinate systems was performed with high accuracy. Furthermore, the automatic image fusion function achieved sufficient patient positioning accuracy and precision for image-guided radiotherapy.


Radiotherapy and Oncology | 2014

Intra- and interfractional variations in geometric arrangement between lung tumours and implanted markers

N. Ueki; Yukinori Matsuo; Mitsuhiro Nakamura; Nobutaka Mukumoto; Yusuke Iizuka; Yuki Miyabe; Akira Sawada; Takashi Mizowaki; Masaki Kokubo; Masahiro Hiraoka

PURPOSE To quantify the intra- and interfractional variations between lung tumours and implanted markers. MATERIALS AND METHODS Gold markers were implanted transbronchially around a lung tumour in fifteen patients. They underwent four-dimensional computed tomography scans twice, and the centroids of the tumour and markers were determined. Intrafractional variations were defined as the residual tumour motions relative to the markers due to respiration from the end-exhale phase. Interfractional variations were defined as the residual setup errors after correction for the position of the implanted markers in end-exhale phase images. RESULTS The intrafractional variations differed between patients. The root mean squares of standard deviations for each phase were 0.6, 0.9, and 1.5mm in the right-left, anterior-posterior, and superior-inferior directions, respectively. The maximum difference in intrafractional variation among 10 phases was correlated with the amplitude of tumour motion in all directions and the tumour-marker distance in the anterior-posterior and superior-inferior directions. The interfractional variations were within 2.5mm. CONCLUSIONS The intrafractional variations differed according to the amount of tumour motion and the tumour-marker distance. Additionally, interfractional variations of up to 2.5mm were observed. Thus, a corresponding margin should be considered during implanted marker-based beam delivery to account for these variations.


Physics in Medicine and Biology | 2007

An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning

T. Yamamoto; Takashi Mizowaki; Yuki Miyabe; H. Takegawa; Yuichiro Narita; Shinsuke Yano; Yasushi Nagata; Teruki Teshima; Masahiro Hiraoka

An integrated Monte Carlo (MC) dose calculation system, MCRTV (Monte Carlo for radiotherapy treatment plan verification), has been developed for clinical treatment plan verification, especially for routine quality assurance (QA) of intensity-modulated radiotherapy (IMRT) plans. The MCRTV system consists of the EGS4/PRESTA MC codes originally written for particle transport through the accelerator, the multileaf collimator (MLC), and the patient/phantom, which run on a 28-CPU Linux cluster, and the associated software developed for the clinical implementation. MCRTV has an interface with a commercial treatment planning system (TPS) (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and reads the information needed for MC computation transferred in DICOM-RT format. The key features of MCRTV have been presented in detail in this paper. The phase-space data of our 15 MV photon beam from a Varian Clinac 2300C/D have been developed and several benchmarks have been performed under homogeneous and several inhomogeneous conditions (including water, aluminium, lung and bone media). The MC results agreed with the ionization chamber measurements to within 1% and 2% for homogeneous and inhomogeneous conditions, respectively. The MC calculation for a clinical prostate IMRT treatment plan validated the implementation of the beams and the patient/phantom configuration in MCRTV.


Journal of Radiation Research | 2013

Feasibility evaluation of a new irradiation technique: three-dimensional unicursal irradiation with the Vero4DRT (MHI-TM2000)

Takashi Mizowaki; Kenji Takayama; Kazuo Nagano; Yuki Miyabe; Yukinori Matsuo; Shuji Kaneko; Masaki Kokubo; Masahiro Hiraoka

The Vero4DRT (MHI-TM2000) is a newly designed unique image-guided radiotherapy system consisting of an O-ring gantry. This system can realize a new irradiation technique in which both the gantry head and O-ring continuously and simultaneously rotate around the inner circumference of the O-ring and the vertical axis of the O-ring, respectively, during irradiation. This technique creates three-dimensional (3D) rotational dynamic conformal arc irradiation, which we term ‘3D unicursal irradiation’. The aim of this study was to present the concept and to estimate feasibility and potential advantages of the new irradiation technique. Collision maps were developed for the technique and a 3D unicursal plan was experimentally created in reference to the collision map for a pancreatic cancer case. Thereafter, dosimetric comparisons among the 3D unicursal, a two-dimensionally rotational dynamic conformal arc irradiation (2D–DCART), and an intensity-modulated radiation therapy (IMRT) plan were conducted. Dose volume data of the 3D unicursal plan were comparable or improved compared to those of the 2D–DCART and IMRT plans with respect to both the target and the organs at risk. The expected monitor unit (MU) number for the 3D unicursal plan was only 7% higher and 22.1% lower than the MUs for the 2D–DCART plan and IMRT plan, respectively. It is expected that the 3D unicursal irradiation technique has potential advantages in both treatment time and dose distribution, which should be validated under various conditions with a future version of the Vero4DRT fully implemented the function.


Journal of Applied Clinical Medical Physics | 2015

Commissioning and quality assurance of Dynamic WaveArc irradiation.

Sayaka Sato; Yuki Miyabe; Kunio Takahashi; Masahiro Yamada; Mitsuhiro Nakamura; Yoshitomo Ishihara; Kenji Yokota; Shuji Kaneko; Takashi Mizowaki; Hajime Monzen; Masahiro Hiraoka

A novel three‐dimensional unicursal irradiation technique “Dynamic WaveArc” (DWA), which employs simultaneous and continuous gantry and O‐ring rotation during dose delivery, has been implemented in Vero4DRT. The purposes of this study were to develop a commissioning and quality assurance procedure for DWA irradiation, and to assess the accuracy of the mechanical motion and dosimetric control of Vero4DRT. To determine the mechanical accuracy and the dose accuracy with DWA irradiation, 21 verification test patterns with various gantry and ring rotational directions and speeds were generated. These patterns were irradiated while recording the irradiation log data. The differences in gantry position, ring position, and accumulated MU (EG,ER, and EMU, respectively) between the planned and actual values in the log at each time point were evaluated. Furthermore, the doses delivered were measured using an ionization chamber and spherical phantom. The constancy of radiation output during DWA irradiation was examined by comparison with static beam irradiation. The mean absolute error (MAE) of EG and ER were within 0.1° and the maximum error was within 0.2°. The MAE of EMU was within 0.7 MU, and maximum error was 2.7 MU. Errors of accumulated MU were observed only around control points, changing gantry, and ring velocity. The gantry rotational range, in which EMU was greater than or equal to 2.0 MU, was not greater than 3.2%. It was confirmed that the extent of the large differences in accumulated MU was negligibly small during the entire irradiation range. The variation of relative output value for DWA irradiation was within 0.2%, and this was equivalent to conventional arc irradiation with a rotating gantry. In conclusion, a verification procedure for DWA irradiation was designed and implemented. The results demonstrated that Vero4DRT has adequate mechanical accuracy and beam output constancy during gantry and ring rotation. PACS number: 87

Collaboration


Dive into the Yuki Miyabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge