Yuki Nagata
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuki Nagata.
Chemical Reviews | 2016
Fivos Perakis; Luigi De Marco; Andrey Shalit; Fujie Tang; Zachary R. Kann; Thomas D. Kühne; Renato Torre; Mischa Bonn; Yuki Nagata
We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches.
Angewandte Chemie | 2014
Cho-Shuen Hsieh; Masanari Okuno; Johannes Hunger; Ellen H. G. Backus; Yuki Nagata; Mischa Bonn
Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak.
Journal of Chemical Physics | 2008
Yuki Nagata; Christian Lennartz
The atomistic simulation of charge transfer process for an amorphous Alq(3) system is reported. By employing electrostatic potential charges, we calculate site energies and find that the standard deviation of site energy distribution is about twice as large as predicted in previous research. The charge mobility is calculated via the Miller-Abrahams formalism and the master equation approach. We find that the wide site energy distribution governs Poole-Frenkel-type behavior of charge mobility against electric field, while the spatially correlated site energy is not a dominant mechanism of Poole-Frenkel behavior in the range from 2x10(5) to 1.4x10(6) V/cm. Also we reveal that randomly meshed connectivities are, in principle, required to account for the Poole-Frenkel mechanism. Charge carriers find a zigzag pathway at low electric field, while they find a straight pathway along electric field when a high electric field is applied. In the space-charge-limited current scheme, the charge-carrier density increases with electric field strength so that the nonlinear behavior of charge mobility is enhanced through the strong charge-carrier density dependence of charge mobility.
Journal of Physical Chemistry Letters | 2013
Yuki Nagata; Cho-Shuen Hsieh; Taisuke Hasegawa; Judith Voll; Ellen H. G. Backus; Mischa Bonn
We present a combined molecular dynamics simulation and experimental study on the water bending mode at the water-vapor interface using sum-frequency generation (SFG) spectroscopy. The SFG spectrum simulated using an ab initio-based water model shows good agreement with the experimental data. The imaginary part of the SFG response shows a negative peak at ∼1650 cm(-1) and a positive peak at ∼1730 cm(-1). Our results reveal that these widely (∼80 cm(-1)) separated peaks result from the interference of two closely spaced (∼29 cm(-1)) peaks of opposite sign. The positive peak at ∼1689 cm(-1) originates from water with two donor hydrogen atoms with the HOH angular bisector pointing down toward the bulk, and the negative peak at ∼1660 cm(-1) from water with free O-H groups, pointing up. The small frequency difference of 29 cm(-1) indicates that the HOH bending mode frequency of interfacial water is relatively insensitive to the number of hydrogen bonds.
Science Advances | 2016
Ravindra Pandey; Kota Usui; Ruth A. Livingstone; Sean A. Fischer; Jim Pfaendtner; Ellen H. G. Backus; Yuki Nagata; Janine Fröhlich-Nowoisky; Lars Schmüser; Sergio Mauri; Jan Scheel; Daniel A. Knopf; Ulrich Pöschl; Mischa Bonn; Tobias Weidner
Specialized bacteria trigger ice formation by controlling the molecular structure and energy transfer in interfacial water. Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.
Nature Communications | 2015
S. T. van der Post; Cho-Shuen Hsieh; Masanari Okuno; Yuki Nagata; H. J. Bakker; Mischa Bonn; Johannes Hunger
Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550 fs when the frequency is increased from 3,100 to 3,700 cm−1. For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface.
Angewandte Chemie | 2015
Mischa Bonn; Yuki Nagata; Ellen H. G. Backus
Water interfaces provide the platform for many important biological, chemical, and physical processes. The water-air interface is the most common and simple aqueous interface and serves as a model system for water at a hydrophobic surface. Unveiling the microscopic (<1 nm) structure and dynamics of interfacial water at the water-vapor interface is essential for understanding the processes occurring on the water surface. At the water interface the network of very strong intermolecular interactions, hydrogen-bonds, is interrupted and the density of water is reduced. A central question regarding water at interfaces is the extent to which the structure and dynamics of water molecules are influenced by the interruption of the hydrogen-bonded network and thus differ from those of bulk water. Herein, we discuss recent advances in the study of interfacial water at the water-air interface using laser-based surface-specific vibrational spectroscopy.
Journal of Chemical Physics | 2015
Tatsuhiko Ohto; Kota Usui; Taisuke Hasegawa; Mischa Bonn; Yuki Nagata
Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).
Journal of Physical Chemistry B | 2015
Kota Usui; Johannes Hunger; Marialore Sulpizi; Tatsuhiko Ohto; Mischa Bonn; Yuki Nagata
Ab initio molecular dynamics (AIMD) simulations in trimethylamine N-oxide (TMAO)-D2O solution are employed to elucidate the effects of TMAO on the reorientational dynamics of D2O molecules. By decomposing the O-D groups of the D2O molecules into specific subensembles, we reveal that water reorientational dynamics are retarded considerably in the vicinity of the hydrophilic TMAO oxygen (O(TMAO)) atom, due to the O-D···O(TMAO) hydrogen-bond. We find that this reorientational motion is governed by two distinct mechanisms: The O-D group rotates (1) after breaking the O-D···O(TMAO) hydrogen-bond, or (2) together with the TMAO molecule while keeping this hydrogen-bond intact. While the orientational slow-down is prominent in the AIMD simulation, simulations based on force field models exhibit much faster dynamics. The simulated angle-resolved radial distribution functions illustrate that the O-D···O(TMAO) hydrogen-bond has a strong directionality through the sp(3) orbital configuration in the AIMD simulation, and this directionality is not properly accounted for in the force field simulation. These results imply that care must be taken when modeling negatively charged oxygen atoms as single point charges; force field models may not adequately describe the hydration configuration and dynamics.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Cho-Shuen Hsieh; R. Kramer Campen; Masanari Okuno; Ellen H. G. Backus; Yuki Nagata; Mischa Bonn
Significance Interfaces of liquid water play an important role in a wide variety of biological, environmental, and technological processes. These interfaces have many unusual macroscopic properties, e.g., the high surface tension, the tendency to sequester ions at the air–water interface, and the high proton conductivity, that are difficult to understand given simple descriptions of bulk liquid water. To understand what differentiates interfacial water from the bulk, insights into the molecular level structure and dynamics of water at interfaces are crucial. We quantify the dynamics of vibrational energy dissipation of interfacial water using ultrafast time-resolved surface specific vibrational spectroscopy and show that the relaxation pathways differ markedly from bulk water and reflect surface structural dynamics. Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air–water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air–H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.