Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Ohigashi is active.

Publication


Featured researches published by Yuki Ohigashi.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel

Xianghong Jing; Chunlong Ma; Yuki Ohigashi; Fernando A. Oliveira; Theodore S. Jardetzky; Lawrence H. Pinto; Robert A. Lamb

Influenza A and B viruses contain proton-selective ion channels, A/M2 and BM2, respectively, and the A/M2 channel activity is inhibited by the drugs amantadine and its methyl derivative rimantadine. The structure of the pore-transmembrane domain has been determined by both x-ray crystallography [Stouffer et al. (2008) Nature 451:596–599] and by NMR methods [Schnell and Chou (2008) Nature 451:591–595]. Whereas the crystal structure indicates a single amantadine molecule in the pore of the channel, the NMR data show four rimantadine molecules bound on the outside of the helices toward the cytoplasmic side of the membrane. Drug binding includes interactions with residues 40–45 with a polar hydrogen bond between rimantadine and aspartic acid residue 44 (D44) that appears to be important. These two distinct drug-binding sites led to two incompatible drug inhibition mechanisms. We mutagenized D44 and R45 to alanine as these mutations are likely to interfere with rimantadine binding and lead to a drug insensitive channel. However, the D44A channel was found to be sensitive to amantadine when measured by electrophysiological recordings in oocytes of Xenopus laevis and in mammalian cells, and when the D44 and R45 mutations were introduced into the influenza virus genome. Furthermore, transplanting A/M2 pore residues 24–36 into BM2, yielded a pH-activated chimeric ion channel that was partially inhibited by amantadine. Thus, taken together our functional data suggest that amantadine/rimantadine binding outside of the channel pore is not the primary site associated with the pharmacological inhibition of the A/M2 ion channel.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel

Chunlong Ma; Alexei L. Polishchuk; Yuki Ohigashi; Amanda L. Stouffer; Arne Schön; Emma Magavern; Xianghong Jing; James D. Lear; Ernesto Freire; Robert A. Lamb; William F. DeGrado; Lawrence H. Pinto

The influenza A virus M2 protein (A/M2) is a homotetrameric pH-activated proton transporter/channel that mediates acidification of the interior of endosomally encapsulated virus. This 97-residue protein has a single transmembrane (TM) helix, which associates to form homotetramers that bind the anti-influenza drug amantadine. However, the minimal fragment required for assembly and proton transport in cellular membranes has not been defined. Therefore, the conductance properties of truncation mutants expressed in Xenopus oocytes were examined. A short fragment spanning residues 21–61, M2(21-61), was inserted into the cytoplasmic membrane and had specific, amantadine-sensitive proton transport activity indistinguishable from that of full-length A/M2; an epitope-tagged version of an even shorter fragment, M2(21-51)-FLAG, had specific activity within a factor of 2 of the full-length protein. Furthermore, synthetic fragments including a peptide spanning residues 22–46 were found to transport protons into liposomes in an amantadine-sensitive manner. In addition, the functionally important His-37 residue pKa values are highly perturbed in the tetrameric form of the protein, a property conserved in the TM peptide and full-length A/M2 in both micelles and bilayers. These data demonstrate that the determinants for folding, drug binding, and proton translocation are packaged in a remarkably small peptide that can now be studied with confidence.


Developmental Cell | 2003

Influenza B Virus BM2 Protein Has Ion Channel Activity that Conducts Protons across Membranes

Jorgen A Mould; Reay G. Paterson; Makoto Takeda; Yuki Ohigashi; Padma Venkataraman; Robert A. Lamb; Lawrence H. Pinto

Successful uncoating of the influenza B virus in endosomes is predicted to require acidification of the interior of the virus particle. We report that a virion component, the BM2 integral membrane protein, when expressed in Xenopus oocytes or in mammalian cells, causes acidification of the cells and possesses ion channel activity consistent with proton conduction. Furthermore, coexpression of BM2 with hemagglutinin (HA) glycoprotein prevents HA from adopting its low-pH-induced conformation during transport to the cell surface, and overexpression of BM2 causes a delay in intracellular transport in the exocytic pathway and causes morphological changes in the Golgi. These data are consistent with BM2 equilibrating the pH gradient between the Golgi and the cytoplasm. The transmembrane domain of BM2 protein and the influenza A virus A/M2 ion channel protein both contain the motif HXXXW, and, for both proteins, the His and Trp residues are important for channel function.


Biochemistry | 2009

Design and Pharmacological Characterization of Inhibitors of Amantadine-Resistant Mutants of the M2 Ion Channel of Influenza A Virus

Victoria Balannik; Jun Wang; Yuki Ohigashi; Xianghong Jing; Emma Magavern; Robert A. Lamb; William F. DeGrado; Lawrence H. Pinto

The A/M2 proton channel of influenza A virus is a target for the anti-influenza drugs amantadine and rimantadine, whose effectiveness was diminished by the appearance of naturally occurring point mutants in the A/M2 channel pore, among which the most common are S31N, V27A, and L26F. We have synthesized and characterized the properties of a series of compounds, originally derived from the A/M2 inhibitor BL-1743. A lead compound emerging from these investigations, spiro[5.5]undecan-3-amine, is an effective inhibitor of wild-type A/M2 channels and L26F and V27A mutant ion channels in vitro and also inhibits replication of recombinant mutant viruses bearing these mutations in plaque reduction assays. Differences in the inhibition kinetics between BL-1743, known to bind inside the A/M2 channel pore, and amantadine were exploited to demonstrate competition between these compounds, consistent with the conclusion that amantadine binds inside the channel pore. Inhibition by all of these compounds was shown to be voltage-independent, suggesting that their charged groups are within the N-terminal half of the pore, prior to the selectivity filter that defines the region over which the transmembrane potential occurs. These findings not only help to define the location and mechanism of binding of M2 channel-blocking drugs but also demonstrate the feasibility of discovering new inhibitors that target this binding site in a number of amantadine-resistant mutants.


Virology | 2003

Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface

Reay G. Paterson; Makoto Takeda; Yuki Ohigashi; Lawrence H. Pinto; Robert A. Lamb

The influenza B virus BM2 protein contains 109 amino acid residues and it is translated from a bicistronic mRNA in an open reading frame that is +2 nucleotides with respect to the matrix (M1) protein. The amino acid sequence of BM2 contains a hydrophobic region (residues 7-25) that could act as a transmembrane (TM) anchor. Analysis of properties of the BM2 protein, including detergent solubility, insolubility in alkali pH 11, flotation in membrane fractions, and epitope-tagging immunocytochemistry, indicates BM2 protein is the fourth integral membrane protein encoded by influenza B virus in addition to hemagglutinin (HA), neuraminidase (NA), and the NB glycoprotein. Biochemical analysis indicates that the BM2 protein adopts an N(out)C(in) orientation in membranes and fluorescence microscopy indicates BM2 is expressed at the cell surface. As the BM2 protein possesses only a single hydrophobic domain and lacks a cleavable signal sequence, it is another example of a Type III integral membrane protein, in addition to M(2), NB, and CM2 proteins of influenza A, B, and C viruses, respectively. Chemical cross-linking studies indicate that the BM2 protein is oligomeric, most likely a tetramer. Comparison of the amino acid sequence of the TM domain of the BM2 protein with the sequence of the TM domain of the proton-selective ion channel M(2) protein of influenza A virus is intriguing as M(2) protein residues critical for ion selectivity/activation and channel gating (H(37) and W(41), respectively) are found at the same relative position and spacing in the BM2 protein (H(19) and W(23)).


Biochemistry | 2008

pH-Induced Conformational Change of the Influenza M2 Protein C-Terminal Domain†

Phuong A. Nguyen; Cinque S. Soto; Alexei L. Polishchuk; Gregory A. Caputo; Chad D. Tatko; Chunlong Ma; Yuki Ohigashi; Lawrence H. Pinto; William F. DeGrado; Kathleen P. Howard

The M2 protein from influenza A is a pH-activated proton channel that plays an essential role in the viral life cycle and serves as a drug target. Using spin labeling EPR spectroscopy, we studied a 38-residue M2 peptide spanning the transmembrane region and its C-terminal extension. We obtained residue-specific environmental parameters under both high- and low-pH conditions for nine consecutive C-terminal sites. The region forms a membrane surface helix at both high and low pH, although the arrangement of the monomers within the tetramer changes with pH. Both electrophysiology and EPR data point to a critical role for residue Lys 49.


Structure | 2008

The Interplay of Functional Tuning, Drug Resistance, and Thermodynamic Stability in the Evolution of the M2 Proton Channel from the Influenza A Virus

Amanda L. Stouffer; Chunlong Ma; Lidia Cristian; Yuki Ohigashi; Robert A. Lamb; James D. Lear; Lawrence H. Pinto; William F. DeGrado

We explore the interplay between amino acid sequence, thermodynamic stability, and functional fitness in the M2 proton channel of influenza A virus. Electrophysiological measurements show that drug-resistant mutations have minimal effects on M2s specific activity, and suggest that resistance is achieved by altering a binding site within the pore rather than a less direct allosteric mechanism. In parallel, we measure the effects of these mutations on the free energy of assembling the homotetrameric transmembrane pore from monomeric helices in micelles and bilayers. Although there is no simple correlation between the evolutionary fitness of the mutants and their stability, all variants formed more stable tetramers in bilayers, and the least-fit mutants showed the smallest increase in stability upon moving from a micelle to a bilayer environment. We speculate that the folding landscape of a micelle is rougher than that of a bilayer, and more accommodating of conformational variations in nonoptimized mutants.


Proceedings of the National Academy of Sciences of the United States of America | 2009

An amantadine-sensitive chimeric BM2 ion channel of influenza B virus has implications for the mechanism of drug inhibition

Yuki Ohigashi; Chunlong Ma; Xianghong Jing; Victoria Balannick; Lawrence H. Pinto; Robert A. Lamb

Influenza A virus M2 (A/M2) and the influenza B virus BM2 are both small integral membrane proteins that form proton-selective ion channels. Influenza A virus A/M2 channel is the target of the antiviral drug amantadine (and its methyl derivative rimantadine), whereas BM2 channel activity is not affected by the drug. The atomic structure of the pore–transmembrane (TM) domain peptide has been determined by x-ray crystallography [Stouffer et al. (2008) Nature 451:596–599] and of a larger M2 peptide by NMR methods [Schnell and Chou (2008) Nature 451:591–595]. The crystallographic data show electron density (at 3.5 Å resolution) in the channel pore, consistent with amantadine blocking the pore of the channel. In contrast, the NMR data show 4 rimantadine molecules bound on the outside of the helices toward the cytoplasmic side of the membrane. Drug binding includes interactions with residues 40–45 and a polar hydrogen bond between rimantadine and aspartic acid residue 44 (D44). These 2 distinct drug-binding sites led to 2 incompatible drug inhibition mechanisms. We have generated chimeric channels between amantadine-sensitive A/M2 and amantadine-insensitive BM2 designed to define the drug-binding site. Two chimeras containing 5 residues of the A/M2 ectodomain and residues 24–36 of the A/M2 TM domain show 85% amantadine/rimantadine sensitivity and specific activity comparable to that of WT BM2. These functional data suggest that the amantadine/rimantadine binding site identified on the outside of the 4 helices is not the primary site associated with the pharmacologic inhibition of the A/M2 ion channel.


Journal of Biological Chemistry | 2008

Identification of the Pore-lining Residues of the BM2 Ion Channel Protein of Influenza B Virus

Chunlong Ma; Cinque S. Soto; Yuki Ohigashi; Albert Taylor; Vasilios Bournas; Brett Glawe; Maria Udo; William F. DeGrado; Robert A. Lamb; Lawrence H. Pinto

The influenza B virus BM2 proton-selective ion channel is essential for virus uncoating, a process that occurs in the acidic environment of the endosome. The BM2 channel causes acidification of the interior of the virus particle, which results in dissociation of the viral membrane protein from the ribonucleo-protein core. The BM2 protein is similar to the A/M2 protein ion channel of influenza A virus (A/M2) in that it contains an HXXXW motif. Unlike the A/M2 protein, the BM2 protein is not inhibited by the antiviral drug amantadine. We used mutagenesis to ascertain the pore-lining residues of the BM2 ion channel. The specific activity (relative to wild type), reversal voltage, and susceptibility to modification by (2-aminoethyl)-methane thiosulfonate and N-ethylmaleimide of cysteine mutant proteins were measured in oocytes. It was found that mutation of transmembrane domain residues Ser9, Ser12, Phe13, Ser16, His19, and Trp23 to cysteine were most disruptive for ion channel function. These cysteine mutants were also most susceptible to (2-aminoethyl)-methane thiosulfonate and N-ethylmaleimide modification. Furthermore, considerable amounts of dimer were formed in the absence of oxidative reagents when cysteine was introduced at positions Ser9, Ser12, Ser16, or Trp23. Based on these experimental data, a BM2 transmembrane domain model is proposed. The presence of polar residues in the pore is a probable explanation for the amantadine insensitivity of the BM2 protein and suggests that related but more polar compounds might serve as useful inhibitors of the protein.


Biochemistry | 1998

A New Metal-Binding Site in Photosynthetic Bacterial Reaction Centers That Modulates QA to QB Electron Transfer†

Lisa M. Utschig; Yuki Ohigashi; Marion C. Thurnauer; David M. Tiede

Collaboration


Dive into the Yuki Ohigashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunlong Ma

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cinque S. Soto

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Emma Magavern

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

James D. Lear

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge