Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Oka is active.

Publication


Featured researches published by Yuki Oka.


Nature | 2010

The cells and peripheral representation of sodium taste in mice

Jayaram Chandrashekar; Christina Kuhn; Yuki Oka; David A. Yarmolinsky; Edith Hummler; Nicholas J. P. Ryba; Charles S. Zuker

Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities—sweet, sour, bitter and umami—are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCα in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.


The Journal of Neuroscience | 2005

Structural Basis for a Broad But Selective Ligand Spectrum of a Mouse Olfactory Receptor: Mapping the Odorant-Binding Site

Sayako Katada; Takatsugu Hirokawa; Yuki Oka; Makiko Suwa; Kazushige Touhara

The olfactory receptor (OR) superfamily provides a basis for the remarkable ability to recognize and discriminate a large number of odorants. In mice, the superfamily includes ∼1000 members, and they recognize overlapping sets of odorants with distinct affinities and specificities. To address the molecular basis of odor discrimination by the mammalian OR superfamily, we performed functional analysis on a series of site-directed mutants and performed ligand docking simulation studies to define the odorant-binding site of a mouse OR. Our results indicate that several amino acids in the transmembrane domains formed a ligand-binding pocket. Although other G-protein-coupled receptors (GPCRs) recognize biogenic ligands mainly with ionic or hydrogen bonding interactions, ORs recognize odorants mostly via hydrophobic and van der Waals interactions. This accounts for the broad but selective binding by ORs as well as their relatively low ligand-binding affinities. Furthermore, we succeeded in rational receptor design, inserting point mutations in the odorant-binding site that resulted in predicted changes in ligand specificity and antagonist activity. This ability to rationally design the receptor validated the binding site structure that was deduced with our mutational and ligand docking studies. Such broad and specific sensitivity suggests an evolutionary process during which mutations in the active site led to an enormous number of ORs with a wide range of ligand specificity. The current study reveals the molecular environment of the odorant-binding site, and it further advances the understanding of GPCR pharmacology.


Science | 2009

The Taste of Carbonation

Jayaram Chandrashekar; David A. Yarmolinsky; Lars von Buchholtz; Yuki Oka; William S. Sly; Nicholas J. P. Ryba; Charles S. Zuker

Gee Fizz The next time you enjoy a carbonated beverage, you can do so with an enhanced understanding of the molecular mechanism that provides its distinctive flavor sensation. Chandrashekar et al. (p. 443) genetically ablated specific sets of taste cells in mice and found that the sensation of CO2 was lost in animals lacking taste cells that sense sour flavors. A screen for genes specifically expressed in these cells revealed the gene encoding carbonic anhydrase 4, which catalyzes hydration of CO2 to form bicarbonate and free protons. Knockout animals not expressing the carbonic anhydrase 4 gene also showed diminished sensation of CO2. The protons produced by the enzyme appear to be the actual molecules sensed by the sour-sensitive cells. This process, combined with tactile sensations, appears to be the source of the popular fizzy sensation. The enzyme carbonic anhydrase mediates the taste sensation of carbonated drinks. Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO2.


The EMBO Journal | 2004

Olfactory receptor antagonism between odorants

Yuki Oka; Masayo Omura; Hiroshi Kataoka; Kazushige Touhara

The detection of thousands of volatile odorants is mediated by several hundreds of different G protein‐coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR‐expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality.


Nature | 2013

High salt recruits aversive taste pathways

Yuki Oka; Matthew Butnaru; Lars von Buchholtz; Nicholas J. P. Ryba; Charles S. Zuker

In the tongue, distinct classes of taste receptor cells detect the five basic tastes; sweet, sour, bitter, sodium salt and umami. Among these qualities, bitter and sour stimuli are innately aversive, whereas sweet and umami are appetitive and generally attractive to animals. By contrast, salty taste is unique in that increasing salt concentration fundamentally transforms an innately appetitive stimulus into a powerfully aversive one. This appetitive–aversive balance helps to maintain appropriate salt consumption, and represents an important part of fluid and electrolyte homeostasis. We have shown previously that the appetitive responses to NaCl are mediated by taste receptor cells expressing the epithelial sodium channel, ENaC, but the cellular substrate for salt aversion was unknown. Here we examine the cellular and molecular basis for the rejection of high concentrations of salts. We show that high salt recruits the two primary aversive taste pathways by activating the sour- and bitter-taste-sensing cells. We also demonstrate that genetic silencing of these pathways abolishes behavioural aversion to concentrated salt, without impairing salt attraction. Notably, mice devoid of salt-aversion pathways show unimpeded, continuous attraction even to very high concentrations of NaCl. We propose that the ‘co-opting’ of sour and bitter neural pathways evolved as a means to ensure that high levels of salt reliably trigger robust behavioural rejection, thus preventing its potentially detrimental effects on health.


Neuron | 2006

Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli

Yuki Oka; Sayako Katada; Masayo Omura; Makiko Suwa; Yoshihiro Yoshihara; Kazushige Touhara

Odorant identity is represented in the olfactory bulb (OB) by the glomerular activity pattern, which reflects a combination of activated odorant receptors (ORs) in the olfactory epithelium. To elucidate this neuronal circuit at the molecular level, we established a functional OR identification strategy based on glomerular activity by combining in vivo Ca(2+) imaging, retrograde dye labeling, and single-cell RT-PCR. Spatial and functional mapping of OR-defined glomeruli revealed that the glomerular positional relationship varied considerably between individual animals, resulting in different OR maps in the OB. Notably, OR-defined glomeruli exhibited different ligand spectra and far higher sensitivity compared to the in vitro pharmacological properties of corresponding ORs. Moreover, we found that the olfactory mucus was an important factor in the regulation of in vivo odorant responsiveness. Our results provide a methodology to examine in vivo glomerular responses at the receptor level and further help address the long-standing issues of olfactory sensitivity and specificity under physiological conditions.


Nature | 2015

Thirst driving and suppressing signals encoded by distinct neural populations in the brain

Yuki Oka; Mingyu Ye; Charles S. Zuker

Thirst is the basic instinct to drink water. Previously, it was shown that neurons in several circumventricular organs of the hypothalamus are activated by thirst-inducing conditions. Here we identify two distinct, genetically separable neural populations in the subfornical organ that trigger or suppress thirst. We show that optogenetic activation of subfornical organ excitatory neurons, marked by the expression of the transcription factor ETV-1, evokes intense drinking behaviour, and does so even in fully water-satiated animals. The light-induced response is highly specific for water, immediate and strictly locked to the laser stimulus. In contrast, activation of a second population of subfornical organ neurons, marked by expression of the vesicular GABA transporter VGAT, drastically suppresses drinking, even in water-craving thirsty animals. These results reveal an innate brain circuit that can turn an animal’s water-drinking behaviour on and off, and probably functions as a centre for thirst control in the mammalian brain.


The Journal of Neuroscience | 2009

Nasal Airflow Rate Affects the Sensitivity and Pattern of Glomerular Odorant Responses in the Mouse Olfactory Bulb

Yuki Oka; Yoshiki Takai; Kazushige Touhara

Sniffing is a characteristic odor sampling behavior in various mammalian species, which is associated with an increase in both nasal airflow rate and breathing frequency. Although the importance of sniffing in olfaction is well recognized, it has been challenging to separate the effect of airflow rate and sniffing frequency in vivo. In this study, we examined the individual effects of airflow rate and frequency on odorant responses of glomeruli in the mouse olfactory bulb (OB) using calcium imaging techniques and an artificial sniffing system. We found that nasal airflow rate, but not sniffing frequency, affected the apparent glomerular responses. When measured using OB imaging, apparent sensitivity for some of the odorants was significantly greater at the high nasal flow rates, while other odorants exhibited the opposite effect. In a single defined glomerulus, the sensitivity shift caused by changes in flow rate varied between odorants, suggesting that the flow rate effect is dependent on the chemical properties of an odorant rather than on the specific characteristics of the expressed olfactory receptor. Using natural flavors containing a variety of odorants, different glomerular activation patterns were observed between breathing and sniffing condition, likely due to odorant-dependent flow rate effects. Our results provide important information on in vivo odorant recognition and suggest that odor representation in the OB is not fixed but rather varies significantly depending on the respiratory state.


Nature Neuroscience | 2017

The cellular mechanism for water detection in the mammalian taste system

Dhruv Zocchi; Gunther Wennemuth; Yuki Oka

Initiation of drinking behavior relies on both internal state and peripheral water detection. While central neural circuits regulating thirst have been well studied, it is still unclear how mammals recognize external water. Here we show that acid-sensing taste receptor cells (TRCs) that were previously suggested as the sour taste sensors also mediate taste responses to water. Genetic silencing of these TRCs abolished water-evoked responses in taste nerves. Optogenetic self-stimulation of acid-sensing TRCs in thirsty animals induced robust drinking responses toward light even without water. This behavior was only observed when animals were water-deprived but not under food- or salt-depleted conditions, indicating that the hedonic value of water-evoked responses is highly internal-state dependent. Conversely, thirsty animals lacking functional acid-sensing TRCs showed compromised discrimination between water and nonaqueous fluids. Taken together, this study revealed a function of mammalian acid-sensing TRCs that provide a cue for external water.


Nature | 2018

Hierarchical neural architecture underlying thirst regulation

Vineet Augustine; Sertan Kutal Gokce; Sangjun Lee; Bo Wang; Thomas J. Davidson; Frank Reimann; Fiona M. Gribble; Karl Deisseroth; Carlos Lois; Yuki Oka

Neural circuits for appetites are regulated by both homeostatic perturbations and ingestive behaviour. However, the circuit organization that integrates these internal and external stimuli is unclear. Here we show in mice that excitatory neural populations in the lamina terminalis form a hierarchical circuit architecture to regulate thirst. Among them, nitric oxide synthase-expressing neurons in the median preoptic nucleus (MnPO) are essential for the integration of signals from the thirst-driving neurons of the subfornical organ (SFO). Conversely, a distinct inhibitory circuit, involving MnPO GABAergic neurons that express glucagon-like peptide 1 receptor (GLP1R), is activated immediately upon drinking and monosynaptically inhibits SFO thirst neurons. These responses are induced by the ingestion of fluids but not solids, and are time-locked to the onset and offset of drinking. Furthermore, loss-of-function manipulations of GLP1R-expressing MnPO neurons lead to a polydipsic, overdrinking phenotype. These neurons therefore facilitate rapid satiety of thirst by monitoring real-time fluid ingestion. Our study reveals dynamic thirst circuits that integrate the homeostatic-instinctive requirement for fluids and the consequent drinking behaviour to maintain internal water balance.

Collaboration


Dive into the Yuki Oka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas J. P. Ryba

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Makiko Suwa

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars von Buchholtz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sertan Kutal Gokce

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge