Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Shirosaki is active.

Publication


Featured researches published by Yuki Shirosaki.


Biomaterials | 2008

Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model

Sandra Amado; Maria J. Simões; P.A.S. Armada da Silva; Ana Lúcia Luís; Yuki Shirosaki; Maria A. Lopes; José D. Santos; Federica Fregnan; Giovanna Gambarotta; Stefania Raimondo; Michele Fornaro; António Veloso; Artur S.P. Varejão; Ana Colette Maurício; Stefano Geuna

Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to develop and test hybrid chitosan membranes to use in peripheral nerve reconstruction, either alone or enriched with N1E-115 neural cells. Hybrid chitosan membranes were tested in vitro, to assess their ability in supporting N1E-115 cell survival and differentiation, and in vivo to assess biocompatibility as well as to evaluate their effects on nerve fiber regeneration and functional recovery after a standardized rat sciatic nerve crush injury. Functional recovery was evaluated using the sciatic functional index (SFI), the static sciatic index (SSI), the extensor postural thrust (EPT), the withdrawal reflex latency (WRL) and ankle kinematics. Nerve fiber regeneration was assessed by quantitative stereological analysis and electron microscopy. All chitosan membranes showed good biocompatibility and proved to be a suitable substrate for plating the N1E-115 cellular system. By contrast, in vivo nerve regeneration assessment after crush injury showed that the freeze-dried chitosan type III, without N1E-115 cell addition, was the only type of membrane that significantly improved posttraumatic axonal regrowth and functional recovery. It can be thus suggested that local enwrapping with this type of chitosan membrane may represent an effective approach for the improvement of the clinical outcome in patients receiving peripheral nerve surgery.


Acta Biomaterialia | 2009

Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration

Yuki Shirosaki; Kanji Tsuru; Satoshi Hayakawa; Akiyoshi Osaka; Maria A. Lopes; José D. Santos; Maria Adelina Costa; Maria Helena Fernandes

We attempted to prepare chitosan-silicate hybrid for use in a medical application and evaluated the physico-chemical properties and osteocompatibility of the hybrids as a function of gamma-glycidoxypropyltrimethoxysilane (GPTMS) concentration. Chitosan-silicate hybrids were synthesized using GPTMS as the reagent for cross-linking of the chitosan chains. Fourier transform infrared spectroscopy, (29)Si CP-MAS NMR spectroscopy and the ninhydrin assay were used to analyze the structures of the hybrids, and stress-strain curves were recorded to estimate their Youngs modulus. The swelling ability, contact angle and cytocompatibility of the hybrids were investigated as a function of the GPTMS concentration. A certain fraction of GPTMS in each hybrid was linked at the epoxy group to the amino group of chitosan, which was associated with the change in the methoxysilane group of GPTMS due to hybridization. The cross-linking density was around 80% regardless of the volume of GPTMS. As the content of GPTMS increased, the water uptake decreased and the hydrophilicity of the hybrids increased except when the content exceeded amolar ratio of 1.5, when it caused a decrease. The values of the mechanical parameters assessed indicated that significant stiffening of the hybrids was obtained by the addition of GPTMS. The adhesion and proliferation of the MG63 osteoblast cells cultured on the chitosan-GPTMS hybrid surface were improved compared to those on the chitosan membrane, regardless of the GPTMS concentration. Moreover, human bone marrow osteoblast cells proliferated on the chitosan-GPTMS hybrid surface and formed a fibrillar extracellular matrix with numerous calcium phosphate globular structures, both in the presence and in the absence of dexamethasone. Therefore, the chitosan-GPTMS hybrids are promising candidates for basic materials that can promote bone regeneration because of their controllable composition (chitosan/GPTMS ratio).


Tissue Engineering Part A | 2008

Use of PLGA 90:10 Scaffolds Enriched with In Vitro–Differentiated Neural Cells for Repairing Rat Sciatic Nerve Defects

Ana Lúcia Luís; Jorge Rodrigues; Stefano Geuna; Sandra Amado; Yuki Shirosaki; Jennifer M. Lee; Federica Fregnan; Maria A. Lopes; António Veloso; António J. Ferreira; José D. Santos; Paulo A.S. Armada-da-Silva; Artur S.P. Varejão; Ana Colette Maurício

Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.


Acta Biomaterialia | 2013

Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles.

Satoshi Hayakawa; Tomoko Kanaya; Kanji Tsuru; Yuki Shirosaki; Akiyoshi Osaka; Eiji Fujii; Koji Kawabata; G. Gasqueres; Christian Bonhomme; Florence Babonneau; Christian Jäger; Hans-Joachim Kleebe

Nanocrystalline hydroxyapatite (HAp) and silicon-containing hydroxyapatite (SiHAp) particles were synthesized by a wet-chemical procedure and their heterogeneous structures involving a disordered phase were analyzed in detail by X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The effects of heterogeneous structure on in vitro biodegradability and the biologically active Ca(II)- and Si(IV)-releasing property of SiHAp particles were discussed. The (29)Si NMR analysis revealed that the Si(IV) was incorporated in the HAp lattice in the form of Q(0)(SiO(4)(4-)orHSiO(4)(3-)) species, accompanied by the formation of condensed silicate units outside the HAp lattice structure, where the fraction and amount of Q(0) species in the HAp lattice depends on the Si content. The (31)P and (1)H NMR results agreed well with the XRD, TEM and FTIR results. NMR quantitative analysis results were explained by using a core-shell model assuming a simplified hexagonal shape of HAp covered with a disordered layer, where Si(IV) in Q(0) was incorporated in the HAp lattice and a disordered phase consisted of hydrated calcium phosphates involving polymeric silicate species and carbonate anions. With the increase in the Si content in the HAp lattice, the in vitro degradation rate of the SiHAps increased, while their crystallite size stayed nearly unchanged. The biologically active Ca(II)- and Si(IV)-releasing ability of the SiHAps was remarkably enhanced at the initial stage of reactions by an increase in the amount of Si(IV) incorporated in the HAp lattice but also by an increase of the amount of polymeric silicate species incorporated in the disordered phase.


Italian journal of anatomy and embryology | 2010

Use of chitosan scaff olds for repairing rat sciatic nerve defects

Maria J. Simões; Sandra Amado; Andrea Gärtner; Paulo A.S. Armada-da-Silva; Stefania Raimondo; Márcia Vieira; Ana Lúcia Luís; Yuki Shirosaki; António Veloso; José D. Santos; Artur S.P. Varejão; Stefano Geuna; Ana Colette Maurício

Neurotmesis must be surgically treated by direct end-to-end suture of the two nerve stumps or by a nerve graft harvested from elsewhere in the body in case of tissue loss. To avoid secondary damage due to harvesting of the nerve graft, a tube-guide can be used to bridge the nerve gap. Previously, our group developed and tested hybrid chitosan membranes for peripheral nerve tubulization and showed that freeze-dried chitosan type III membranes were particularly effective for improving peripheral nerve functional recovery after axonotmesis. Chitosan type III membranes have about 110 microm pores and about 90% of porosity, due to the employment of freeze-drying technique. The present study aimed to verify if chitosan type III membranes can be successfully used also for improving peripheral nerve functional recovery after neurotmesis of the rat sciatic nerve. Sasco Sprague-Dawley adult rats were divided into 6 groups: Group 1: end-to-end neurorrhaphy enwrapped by chitosan membrane type III (End-to-EndChitll); Group 2: 10mm-nerve gap bridged by an autologous nerve graft enwrapped by chitosan membrane type III (Graf180degreeChitIII); Group 3: 10 mm-nerve gap bridged by chitosan type III tube-guides (GapChitIII); These 3 experimental groups were compared with 3 control groups, respectively: Group 4: 10 mm-nerve gap bridged by an autologous nerve graft (Graft180degree); Group 5: 10 mm-nerve gap bridged by PLGA 90:10 tube-guides (PLGA); Group 6: end-to-end neurorrhaphy alone (End-to-End). Motor and sensory functional recovery were evaluated throughout a healing period of 20 weeks using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. Regenerated nerves withdrawn at the end of the experiment were analysed histologically. Results showed that nerve regeneration was successful in all experimental and control groups and that chitosan type III tubulization induced a significantly better nerve regeneration and functional recovery in comparison to PLGA tubulization control. Further investigation is needed to explore the mechanisms at the basis of the positive effects of chitosan type III on axonal regeneration.


Neural Regeneration Research | 2012

Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model.

Andrea Gärtner; Tiago Pereira; Maria J. Simões; Paulo A.S. Armada-da-Silva; Miguel L. França; Rosa Sousa; Simone Bompasso; Stefania Raimondo; Yuki Shirosaki; Yuri Nakamura; Satoshi Hayakawa; Akiyoshi Osakah; Beatriz Porto; Ana Lúcia Luís; Artur S.P. Varejão; Ana Colette Maurício

Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Whartons jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Whartons jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250–1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may represent a very promising clinical tool in peripheral nerve reconstructive surgery. Yet, umbilical cord human mesenchymal stem cells, that can be expanded in culture and induced to form several different types of cells, may prove, in future experiments, to be a new source of cells for cell therapy, including targets such as peripheral nerve and muscle.


Materials Science and Engineering: C | 2014

The role of the chemical composition of monetite on the synthesis and properties of α-tricalcium phosphate

Jo Duncan; James F. MacDonald; John V. Hanna; Yuki Shirosaki; Satoshi Hayakawa; Akiyoshi Osaka; Janet M. S. Skakle; Iain Ronald Gibson

There has been a resurgence of interest in alpha-tricalcium phosphate (α-TCP), with use in cements, polymer composites and in bi- and tri-phasic calcium phosphate bone grafts. The simplest and most established method for preparing α-TCP is the solid state reaction of monetite (CaHPO4) and calcium carbonate at high temperatures, followed by quenching. In this study, the effect of the chemical composition of reagents used in the synthesis of α-TCP on the local structure of the final product is reported and findings previously reported pertaining to the phase composition and stability are also corroborated. Chemical impurities in the monetite reagents were identified and could be correlated to the calcium phosphate products formed; magnesium impurities favoured the formation of β-TCP, whereas single phase α-TCP was favoured when magnesium levels were low. Monetite synthesised in-house exhibited a high level of chemical purity; when this source was used to produce an α-TCP sample, the α-polymorph could be obtained by both quenching and by cooling to room temperature in the furnace at rates between 1 and 10°C/min, thereby simplifying the synthesis process. It was only when impurities were minimised that the 12 phosphorus environments in the α-TCP structure could be resolved by (31)P nuclear magnetic resonance; samples containing chemical impurity showed differing degrees of line-broadening. Reagent purity should therefore be considered a priority when synthesising/characterising the α-polymorph of TCP.


Journal of Biomedical Materials Research Part A | 2015

Preparation and in vitro cytocompatibility of chitosan-siloxane hybrid hydrogels

Yuki Shirosaki; Masashi Hirai; Satoshi Hayakawa; Eiji Fujii; Maria A. Lopes; José D. Santos; Akiyoshi Osaka

Injectable systems can be used in minimally invasive surgical applications. Although chitosan-glycerophosphate hydrogel systems are biodegradable and biocompatible, the long periods of time required for their effective gelation have severely limited their clinical application. The challenges currently facing researchers in this field are therefore focused on shortening the gelation time and biocompatibility of these materials to develop hydrogels suitable for clinical application. Chitosan and γ-glycidoxypropyltrimethoxysilane (GPTMS) hybrids have recently demonstrated good cytocompatibility with respect to human osteoblastic cells (MG63) and human bone marrow cells. Although these precursor sols could form gels under physiological conditions, they required neutralization with a sodium hydroxide solution. In this study, the chitosan-GPTMS hybrid systems were neutralized with glycerophosphate to prepare injectable hydrogels. The results revealed that the gelation time of the hydrogels could be controlled by the amount of GPTMS in the precursor sols. The in vitro cytocompatibility of the hydrogels were evaluated in terms of the proliferation of MG63 cells cultured either directly onto the hydrogels or indirectly onto the cell culture plate under a hydrogel insert. In the former case, the cells showed good attachment and proliferated for up to 7 days. Similar results were observed in the in direct culture. These results suggest that this new chitosan-GPTMS hydrogel could potentially be used as an injectable biomaterial in clinical applications.


BioMed Research International | 2014

Challenges for Nerve Repair Using Chitosan-Siloxane Hybrid Porous Scaffolds

Yuki Shirosaki; Satoshi Hayakawa; Akiyoshi Osaka; Maria A. Lopes; José D. Santos; Stefano Geuna; Ana Colette Maurício

The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Whartons jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.


Journal of Biomedical Materials Research Part A | 2013

Nucleation and growth of apatite on an anatase layer irradiated with UV light under different environmental conditions.

Keita Uetsuki; Shinsuke Nakai; Yuki Shirosaki; Satoshi Hayakawa; Akiyoshi Osaka

Implant surfaces must sometimes be modified to form strong bonds to host tissues. The method of depositing an anatase layer on chemically pure titanium by chemical oxidation with H(2)O(2) and subsequent calcination (CHT) is known to deposit apatite under physiological conditions; it thus exhibits bone-bonding ability. UV irradiation should affect the bonding ability because the CHT anatase layer would experience certain chemical modifications, such as a decrease or an increase in the number of Ti-OH and Ti-O(H)-Ti sites; these sites are considered active sites for apatite nucleation. When in vitro apatite deposition was examined, using Kokubos simulated body fluid, UV irradiation in air reduced the apatite-forming ability of the CHT anatase layer, and UV irradiation on the samples in water enhanced the ability. These results were correlated to changes in the Ti-OH and Ti-O(H)-Ti sites, as determined by O 1s X-ray photoelectron spectroscopy. Analysis of the number and size of the semi-spherical apatite particles and their surface coverage led to a model: proper assembly of the Ti-OH and Ti-O(H)-Ti sites should only give rise to the induction of apatite nucleation, analogous to topotaxy effects.

Collaboration


Dive into the Yuki Shirosaki's collaboration.

Researchain Logo
Decentralizing Knowledge