Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Sudo is active.

Publication


Featured researches published by Yuki Sudo.


Molecular Microbiology | 2009

Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB

Seiji Kojima; Katsumi Imada; Mayuko Sakuma; Yuki Sudo; Chojiro Kojima; Tohru Minamino; Michio Homma; Keiichi Namba

Torque generation in the Salmonella flagellar motor is coupled to translocation of H+ ions through the proton‐conducting channel of the Mot protein stator complex. The Mot complex is believed to be anchored to the peptidoglycan (PG) layer by the putative peptidoglycan‐binding (PGB) domain of MotB. Proton translocation is activated only when the stator is installed into the motor. We report the crystal structure of a C‐terminal periplasmic fragment of MotB (MotBC) that contains the PGB domain and includes the entire periplasmic region essential for motility. Structural and functional analyses indicate that the PGB domains must dimerize in order to form the proton‐conducting channel. Drastic conformational changes in the N‐terminal portion of MotBC are required both for PG binding and the proton channel activation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor

Yuki Sudo; John L. Spudich

In haloarchaea, light-driven ion transporters have been modified by evolution to produce sensory receptors that relay light signals to transducer proteins controlling motility behavior. The proton pump bacteriorhodopsin and the phototaxis receptor sensory rhodopsin II (SRII) differ by 74% of their residues, with nearly all conserved residues within the photoreactive retinal-binding pocket in the membrane-embedded center of the proteins. Here, we show that three residues in bacteriorhodopsin replaced by the corresponding residues in SRII enable bacteriorhodopsin to efficiently relay the retinal photoisomerization signal to the SRII integral membrane transducer (HtrII) and induce robust phototaxis responses. A single replacement (Ala-215–Thr), bridging the retinal and the membrane-embedded surface, confers weak phototaxis signaling activity, and the additional two (surface substitutions Pro-200–Thr and Val-210–Tyr), expected to align bacteriorhodopsin and HtrII in similar juxtaposition as SRII and HtrII, greatly enhance the signaling. In SRII, the three residues form a chain of hydrogen bonds from the retinals photoisomerized C13C14 double bond to residues in the membrane-embedded α-helices of HtrII. The results suggest a chemical mechanism for signaling that entails initial storage of energy of photoisomerization in SRIIs hydrogen bond between Tyr-174, which is in contact with the retinal, and Thr-204, which borders residues on the SRII surface in contact with HtrII, followed by transfer of this chemical energy to drive structural transitions in the transducer helices. The results demonstrate that evolution accomplished an elegant but simple conversion: The essential differences between transport and signaling proteins in the rhodopsin family are far less than previously imagined.


Biophysical Journal | 2001

Photo-Induced Proton Transport of Pharaonis Phoborhodopsin (Sensory Rhodopsin II) Is Ceased by Association with the Transducer

Yuki Sudo; Masayuki Iwamoto; Kazumi Shimono; Masato Sumi; Naoki Kamo

Phoborhodopsin (pR; also sensory rhodopsin II, sRII) is a retinoid protein in Halobacterium salinarum and works as a receptor of negative phototaxis. Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. In bacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. We expressed pHtrII-free ppR or ppR-pHtrII complex in H. salinarum Pho81/wr(-) cells. Flash-photolysis experiments showed no essential changes between pHtrII-free ppR and the complex. Using SnO2 electrode, which works as a sensitive pH electrode, and envelope membrane vesicles, we showed the photo-induced outward proton transport. This membranous proton transport was also shown using membrane vesicles from Escherichia coli in which ppR was functionally expressed. On the other hand, the proton transport was ceased when ppR formed a complex with pHtrII. Using membrane sheet, it was shown that the complex undergoes first proton uptake and then release during the photocycle, the same as pHtrII-free ppR, although the net proton transport ceases. Taking into consideration that the complex of sRII (pR) and its transducer undergoes extracellular proton circulation (J. Sasaki and J. L., Biophys. J. 77:2145-2152), we inferred that association with pHtrII closes a cytoplasmic channel of ppR, which lead to the extracellular proton circulation.


Biochemistry | 2001

Photochemistry and Photoinduced Proton-Transfer by Pharaonis Phoborhodopsin

Naoki Kamo; Kazumi Shimono; Masayuki Iwamoto; Yuki Sudo

Phoborhodopsin (pR or sensory rhodopsin II, sRII) is a photoreceptor of the negative phototaxis of Halobacterium salinarum, and pharaonis phoborhodopsin (ppR or pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. The photocycle of ppR is essentially as follows: ppR(498) → ppRK(∼540) → ppRKL(512) → ppRL(488) → ppRM(390) → ppRO(560) → ppR (numbers in parenthesis denote the maximum absorbance). The photocycle is very similar to that of bacteriorhodopsin, but the rate of initial pigment recovery is about two-orders of magnitude slower. By low-temperature spectroscopy, two K-intermediates were found but the L intermediate was not detected. The lack of L indicates extraordinary stability of K at low temperature. ppRM is photoactive similar to M of bR. The ground state ppR contains only all-trans retinal whereas ppRM and ppRO contain 13-cis and all-trans, respectively. ppR has the ability of lightinduced proton transport from the inside to the outside. Proton uptake occurs at the formation of ppRO and the release at its decay. ppR associates with its transducer and this complex transmits a signal to the cytoplasm. The proton transport ability is lost when the complex forms, but the proton uptake and release still occur, suggesting that the proton movement is non-electrogenic (release and uptake occur from the same side). The stoichiometry of the complex between ppR and the transducer is 1 : 1. ppR or pR has absorption maximum at ∼500 nm, which is blue-shifted from those of other archaeal rhodopsins. The molecular mechanism of this color regulation is not yet solved.


Biochimica et Biophysica Acta | 2001

Environment around the chromophore in pharaonis phoborhodopsin: mutation analysis of the retinal binding site.

Kazumi Shimono; Yukako Ikeura; Yuki Sudo; Masayuki Iwamoto; Naoki Kamo

Phoborhodopsin (pR or sensory rhodopsin II, sRII) and pharaonis phoborhodopsin (ppR or pharaonis sRII, psRII) have a unique absorption maximum (lambda(max)) compared with three other archaeal rhodopsins: lambda(max) of pR and ppR is approx. 500 nm and of others (e.g. bacteriorhodopsin, bR) is 560-590 nm. To determine the residue contributing to the opsin shift from ppR to bR, we constructed various ppR mutants, in which a single residue was substituted for a residue corresponding to that of bR. The residues mutated were those which differ from that of bR and locate within 5 A from the conjugated polyene chain of the chromophore or any methyl group of the polyene chain. The shifts of lambda(max) of all mutants were small, however. We constructed a mutant in which all residues which differ from those of bR in the retinal binding site were simultaneously substituted for those of bR, but the shift was only from 499 to 509 nm. Next, we constructed a mutant in which 10 residues located within 5 A from the polyene as described above were simultaneously substituted. Only 44% of the opsin shift (lambda(max) of 524 nm) from ppR to bR was obtained even when all amino acids around the chromophore were replaced by the same residues as bR. We therefore conclude that the structural factor is more important in accounting for the difference of lambda(max) between ppR and bR rather than amino acid substitutions. The possible structural factors are discussed.


Photochemistry and Photobiology | 2001

Pharaonis Phoborhodopsin Binds to its Cognate Truncated Transducer Even in the Presence of a Detergent with a 1:1 Stoichiometry¶

Yuki Sudo; Masayuki Iwamoto; Kazumi Shimono; Naoki Kamo

Abstract Pharaonis phoborhodopsin (ppR) (also pharaonis sensory rhodopsin II) is a receptor of the negative phototaxis of Natronobacterium pharaonis. ppR forms a complex with its pharaonis halobacterial transducer (pHtrII), and this complex transmits the light signal to the sensory system in the cytoplasm. The expressed C-terminal-His tagged ppR and C-terminal-His tagged truncated pHtrII (t-Htr) in Escherichia coli (His means the 6× histidine tag) form a complex even in the presence of 0.1% of n-dodecyl-β-d-maltoside, and the M-decay of the complex became about twice slower than that of ppR alone. The photocycling rates under varying concentration ratios of ppR to t-Htr in the presence of detergent were measured. The data were analyzed on the following assumptions: (1) the M-decay of both ppR alone and the complex followed a single exponential decay with different time constants; and (2) the M-decay under varying concentration ratios of ppR to t-Htr, therefore, followed a biexponential decay function which combined the decay of the free ppR and that of the complex as photoreactive species. From these analyses we estimated the dissociation constant (15.2 ± 1.8 μM) and the number of binding sites (1.2 ± 0.08).


Journal of Biological Chemistry | 2008

Salinibacter Sensory Rhodopsin SENSORY RHODOPSIN I-LIKE PROTEIN FROM A EUBACTERIUM

Tomomi Kitajima-Ihara; Yuji Furutani; Daisuke Suzuki; Kunio Ihara; Hideki Kandori; Michio Homma; Yuki Sudo

Halobacterium salinarum sensory rhodopsin I (HsSRI), a dual receptor regulating both negative and positive phototaxis in haloarchaea, transmits light signals through changes in protein-protein interactions with its transducer, halobacterial transducer protein I (HtrI). Haloarchaea also have another sensor pigment, sensory rhodopsin II (SRII), which functions as a receptor regulating negative phototaxis. Compared with HsSRI, the signal relay mechanism of SRII is well characterized because SRII from Natronomonus pharaonis (NpSRII) is much more stable than HsSRI and HsSRII, especially in dilute salt solutions and is much more resistant to detergents. Two genes encoding SRI homologs were identified from the genome sequence of the eubacterium Salinibacter ruber. Those sequences are distantly related to HsSRI (∼40% identity) and contain most of the amino acid residues identified as necessary for its function. To determine whether those genes encode functional protein(s), we cloned and expressed them in Escherichia coli. One of them (SrSRI) was expressed well as a recombinant protein having all-trans retinal as a chromophore. UV-Vis, low-temperature UV-Vis, pH-titration, and flash photolysis experiments revealed that the photochemical properties of SrSRI are similar to those of HsSRI. In addition to the expression system, the high stability of SrSRI makes it possible to prepare large amounts of protein and enables studies of mutant proteins that will allow new approaches to investigate the photosignaling process of SRI-HtrI.


Journal of Biological Chemistry | 2006

Functional Importance of the Interhelical Hydrogen Bond between Thr204 and Tyr174 of Sensory Rhodopsin II and Its Alteration during the Signaling Process

Yuki Sudo; Yuji Furutani; Hideki Kandori; John L. Spudich

Sensory rhodopsin II (SRII), a receptor for negative phototaxis in haloarchaea, transmits light signals through changes in protein-protein interaction with its transducer HtrII. Light-induced structural changes throughout the SRII-HtrII interface, which spans the periplasmic region, membrane-embedded domains, and cytoplasmic domains near the membrane, have been identified by several studies. Here we demonstrate by site-specific mutagenesis and analysis of phototaxis behavior that two residues in SRII near the membrane-embedded interface (Tyr174 on helix F and Thr204 on helix G) are essential for signaling by the SRII-HtrII complex. These residues, which are the first in SRII shown to be required for phototaxis function, provide biological significance to the previous observation that the hydrogen bond between them is strengthened upon the formation of the earliest SRII photointermediate (SRIIK) only when SRII is complexed with HtrII. Here we report frequency changes of the S-H stretch of a cysteine substituted for SRII Thr204 in the signaling state intermediates of the SRII photocycle, as well as an influence of HtrII on the hydrogen bond strength, supporting a direct role of the hydrogen bond in SRII-HtrII signal relay chemistry. Our results suggest that the light signal is transmitted to HtrII from the energized interhelical hydrogen bond between Thr204 and Tyr174, which is located at both the retinal chromophore pocket and in helices F and G that form the membrane-embedded interaction surface to the signal-bearing second transmembrane helix of HtrII. The results argue for a critical process in signal relay occurring at this membrane interfacial region of the complex.


Journal of Biological Chemistry | 2003

Importance of the Broad Regional Interaction for Spectral Tuning in Natronobacterium pharaonis Phoborhodopsin (Sensory Rhodopsin II)

Kazumi Shimono; Takanori Hayashi; Yukako Ikeura; Yuki Sudo; Masayuki Iwamoto; Naoki Kamo

Natronobacterium pharaonis phoborhodopsin (ppR; also called N. pharaonis sensory rhodopsin II, NpsRII) is a photophobic sensor in N. pharaonis, and has a shorter absorption maximum (λmax, 500 nm) than those of other archaeal retinal proteins (λmax, 560–590 nm) such as bacteriorhodopsin (bR). We constructed chimeric proteins between bR and ppR to investigate the long range interactions effecting the color regulation among archaeal retinal proteins. The λmax of B-DEFG/P-ABC was 545 nm, similar to that of bR expressed in Escherichia coli (λmax, 550 nm). B-DEFG/P-ABC means a chimera composed of helices D, E, F, and G of bR and helices A, B, and C of ppR. This indicates that the major factor(s) determining the difference in λmax between bR and ppR exist in helices DEFG. To specify the more minute regions for the color determination between bR and ppR, we constructed 15 chimeric proteins containing helices D, E, F, and G of bR. According to the absorption spectra of the various chimeric proteins, the interaction between helices D and E as well as the effect of the hydroxyl group around protonated Schiff base on helix G (Thr-204 for ppR and Ala-215 for bR) are the main factors for spectral tuning between bR and ppR.


Journal of Biological Chemistry | 2011

A Microbial Rhodopsin with a Unique Retinal Composition Shows Both Sensory Rhodopsin II and Bacteriorhodopsin-like Properties

Yuki Sudo; Kunio Ihara; Shiori Kobayashi; Daisuke Suzuki; Hiroki Irieda; Takashi Kikukawa; Hideki Kandori; Michio Homma

Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.

Collaboration


Dive into the Yuki Sudo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Kandori

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuji Furutani

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akimori Wada

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Daisuke Suzuki

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar

Akira Naito

Yokohama National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge