Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yukiyo Asawa is active.

Publication


Featured researches published by Yukiyo Asawa.


Biomaterials | 2010

The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage

Yoko Tanaka; Hisayo Yamaoka; Satoru Nishizawa; Satoru Nagata; Toru Ogasawara; Yukiyo Asawa; Yuko Fujihara; Tsuyoshi Takato; Kazuto Hoshi

To broaden the clinical application of cartilage regenerative medicine, we should develop an implant-type tissue-engineered cartilage with firmness and 3-D structure. For that, we attempted to use a porous biodegradable polymer scaffold in the combination with atelocollagen hydrogel, and optimized the structure and composition of porous scaffold. We administered chondrocytes/atelocollagen mixture into the scaffolds with various kinds of porosities (80-95%) and pore sizes (0.3-2.0 mm), consisting of PLLA or related polymers (PDLA, PLA/CL and PLGA), and transplanted the constructs in the subcutaneous areas of nude mice. The constructs using scaffolds of excessively large pore sizes (>1 mm) broke out on the skin and impaired the host tissue. The scaffold with the porosity of 95% and pore size of 0.3 mm could effectively retain the cells/gel mixture and indicated a fair cartilage regeneration. Regarding the composition, the tissue-engineered cartilage was superior in PLGA and PLLA to that in PLA/CA and PDLA. The latter two showed the dense accumulation of macrophages, which may deteriorate the cartilage regeneration. Although PLGA or PLLA has been currently recommended for the scaffold of cartilage, the polymer for which biodegradation was exactly synchronized to the cartilage regeneration would improve the quality of the tissue-engineered cartilage.


Journal of Biological Chemistry | 2007

Optimal Combination of Soluble Factors for Tissue Engineering of Permanent Cartilage from Cultured Human Chondrocytes

Guangyao Liu; Hiroshi Kawaguchi; Toru Ogasawara; Yukiyo Asawa; Jun-ichi Kishimoto; Tsuguharu Takahashi; Ung-il Chung; Hisayo Yamaoka; Hirotaka Asato; Kozo Nakamura; Tsuyoshi Takato; Kazuto Hoshi

Since permanent cartilage has poor self-regenerative capacity, its regeneration from autologous human chondrocytes using a tissue engineering technique may greatly benefit the treatment of various skeletal disorders. However, the conventional autologous chondrocyte implantation is insufficient both in quantity and in quality due to two major limitations: dedifferentiation during a long term culture for multiplication and hypertrophic differentiation by stimulation for the redifferentiation. To overcome the limitations, this study attempted to determine the optimal combination in primary human chondrocyte cultures under a serum-free condition, from among 12 putative chondrocyte regulators. From the exhaustive 212 = 4,096 combinations, 256 were selected by fractional factorial design, and bone morphogenetic protein-2 and insulin (BI) were statistically determined to be the most effective combination causing redifferentiation of the dedifferentiated cells after repeated passaging. We further found that the addition of triiodothyronine (T3) prevented the BI-induced hypertrophic differentiation of redifferentiated chondrocytes via the suppression of Akt signaling. The implant formed by the human chondrocytes cultured in atelocollagen and poly(l-latic acid) scaffold under the BI + T3 stimulation consisted of sufficient hyaline cartilage with mechanical properties comparable with native cartilage after transplantation in nude mice, indicating that BI + T3 is the optimal combination to regenerate a clinically practical permanent cartilage from autologous chondrocytes.


Tissue Engineering Part A | 2009

Aptitude of Auricular and Nasoseptal Chondrocytes Cultured Under a Monolayer or Three-Dimensional Condition for Cartilage Tissue Engineering

Yukiyo Asawa; Toru Ogasawara; Tsuguharu Takahashi; Hisayo Yamaoka; Satoru Nishizawa; Ko Matsudaira; Yoshiyuki Mori; Tsuyoshi Takato; Kazuto Hoshi

To elucidate the characterizations of chondrocytes originating from auricular cartilage (donors: 10-15 years) and nasoseptal one (20-23 years), we evaluated proliferation or matrix synthesis of both cells cultured under monolayer and collagen type I (COL1) three-dimensional (3D) conditions. Three passages were needed until cell numbers of auricular chondrocytes in the 3D culture increased 1000-fold, although those in monolayer culture or nasoseptal monolayer and 3D cells reached a 1000-fold increase at four passages. When we cultured the tissue-engineered cartilage pellets made of the chondrocytes proliferated at 1000-fold increase, the pellets of monolayer cells maintained their sizes during the culture period. However, those of nasoseptal 3D cells began to shrink at day 1 and became approximately one-tenth in size at day 21. The downsizing of pellets may result from the upregulation of tumor necrosis factor (TNF)-alpha or the related proteinases, including matrix metalloproteinases (MMPs)-1, -2, and -3, and cathepsin B, suggesting that the nasoseptal chondrocytes, which are physiologically separated from COL1, may be hardly adapted for the COL1 3D proliferation condition. Ideally, these characteristics would have been compared between the chondrocytes from donors that are completely matched in ages. However, according to our data using closely matched ones, the auricular chondrocytes seemed to more rapidly proliferate and produce less proteinases during this 3D culture than the nasoseptal ones.


Cell Transplantation | 2012

Early stage foreign body reaction against biodegradable polymer scaffolds affects tissue regeneration during the autologous transplantation of tissue-engineered cartilage in the canine model.

Yukiyo Asawa; Tomoaki Sakamoto; Makoto Komura; Makoto Watanabe; Satoru Nishizawa; Yutaka Takazawa; Tsuyoshi Takato; Kazuto Hoshi

To overcome the weak points of the present cartilage regenerative medicine, we applied a porous scaffold for the production of tissue-engineered cartilage with a greater firmness and a 3D structure. We combined the porous scaffolds with atelocollagen to retain the cells within the porous body. We conducted canine autologous chondrocyte transplants using biodegradable poly-l-lactic acid (PLLA) or poly-dl-lactic-co-glycolic acid (PLGA) polymer scaffolds, and morphologically and biochemically evaluated the time course changes of the transplants. The histological findings showed that the tissue-engineered constructs using PLLA contained abundant cartilage 1, 2, and 6 months after transplantation. However, the PLGA constructs did not possess cartilage and could not maintain their shapes. Biochemical measurement of the proteoglycan and type II collagen also supported the superiority of PLLA. The biodegradation of PLGA progressed much faster than that of PLLA, and the PLGA had almost disappeared by 2 months. The degraded products of PLGA may evoke a more severe tissue reaction at this early stage of transplantation than PLLA. The PLLA scaffolds were suitable for cartilage tissue engineering under immunocompetent conditions, because of the retarded degradation properties and the decrease in the severe tissue reactions during the early stage of transplantation.


Tissue Engineering Part A | 2009

Tissue Reactions to Engineered Cartilage Based on Poly-L-Lactic Acid Scaffolds

Yuko Fujihara; Yukiyo Asawa; Tsuyoshi Takato; Kazuto Hoshi

Tissue reactions against poly-L-lactic acid (PLLA) in engineered cartilage may influence the size or maturity of regenerative tissue. To understand the biological events in these reactions, we subcutaneously transplanted engineered constructs of PLLA scaffolds with or without human chondrocytes or atelocollagen in nude mice and evaluated neovascularization and macrophage activation, which can be assessed even in nude mice. Although not showing cartilage regeneration, PLLA alone demonstrated dense localization of macrophages and blood vessels, as well as a high level of interleukin-1 beta and tissue hemoglobin at 2 and 8 weeks. Otherwise, constructs with PLLA and chondrocytes with or without atelocollagen (PLLA/cell/gel or PLLA/cell) formed mature cartilage by 8 weeks, which was more prominent in PLLA/cell/gel. Although accumulation of macrophages and blood vessels in PLLA/cell/gel and PLLA/cell was comparable with that in PLLA at 2 weeks, that in PLLA/cell/gel markedly decreased by 8 weeks, with blood vessels and macrophages excluded into non-cartilage areas. Macrophage migration inhibitory factor could be involved in these suppressed tissue reactions, because it was expressed in chondrocytes of engineered cartilage. Intense tissue reactions inevitably occurred in biopolymers alone, but it is possible that maturation of engineered cartilage suppressed these reactions, which may contribute to circumventing deformity or malformation of engineered tissues.


Cell Biology International | 2008

Growth factor contents of autologous human sera prepared by different production methods and their biological effects on chondrocytes

Yoko Tanaka; Toru Ogasawara; Yukiyo Asawa; Hisayo Yamaoka; Satoru Nishizawa; Yoshiyuki Mori; Tsuyoshi Takato; Kazuto Hoshi

To discuss the autologous serum production for cartilage tissue engineering, we compared three kinds of sera: whole blood‐derived serum (WBS), platelet‐containing plasma‐derived serum (PCS), and plasma‐derived serum (PDS), on the growth factor contents and their biological effects on human auricular chondrocytes. EGF, VEGF and PDGF levels were highest in WBS, while PCS and PDS followed WBS. The proliferation effects of WBS were the most pronounced, followed by that of PCS, both of which realized a 1000‐fold‐increase in chondrocyte numbers at the third passage, whereas PDS reached it after passage 4. No significant differences were observed in histology or cartilaginous matrix measurements of tissue‐engineered cartilage produced from chondrocytes cultured under different serum conditions. WBS would be clinically useful because of its potent proliferation effects, while PCS, which possibly saves the red cell concentrate, may be an option in cases where there are elevated risks of blood loss.


Journal of Biomedical Materials Research Part A | 2009

The application of atelocollagen gel in combination with porous scaffolds for cartilage tissue engineering and its suitable conditions.

Hisayo Yamaoka; Yujirou Tanaka; Satoru Nishizawa; Yukiyo Asawa; Tsuyoshi Takato; Kazuto Hoshi

For improving the quality of tissue-engineered cartilage, we examined the in vivo usefulness of porous bodies as scaffolds combined with an atelocollagen hydrogel, and investigated the suitable conditions for atelocollagen and seeding cells within the engineered tissues. We made tissue-engineered constructs using a collagen sponge (CS) or porous poly(L-lactide) (PLLA) with human chondrocytes and 1% hydrogel, the concentration of which maximized the accumulation of cartilage matrices. The CS was soft with a Youngs modulus of less than 1 MPa, whereas the porous PLLA was very rigid with a Youngs modulus of 10 MPa. Although the constructs with the CS shrank to 50% in size after a 2-month subcutaneous transplantation in nude mice, the PLLA constructs maintained their original sizes. Both of the porous scaffolds contained some cartilage regeneration in the presence of the chondrocytes and hydrogel, but the PLLA counterpart significantly accumulated abundant matrices in vivo. Regarding the conditions of the chondrocytes, the cartilage regeneration was improved in inverse proportion to the passage numbers among passages 3-8, and was linear with the cell densities (10(6) to 10(8) cells/mL). Thus, the rigid porous scaffold can maintain the size of the tissue-engineered cartilage and realize fair cartilage regeneration in vivo when combined with 1% atelocollagen and some conditioned chondrocytes.


Cell Proliferation | 2010

Involvement of fibroblast growth factor 18 in dedifferentiation of cultured human chondrocytes

Hisayo Yamaoka; Satoru Nishizawa; Yukiyo Asawa; Yuko Fujihara; Toru Ogasawara; Keiko Yamaoka; Satoru Nagata; Tsuyoshi Takato; Kazuto Hoshi

Objective:  Chondrocytes inevitably decrease production of cartilaginous matrices during long‐term cultures with repeated passaging; this is termed dedifferentiation. To learn more concerning prevention of dedifferentiation, we have focused here on the fibroblast growth factor (FGF) family that influences chondrocyte proliferation or differentiation.


Journal of Bioscience and Bioengineering | 2012

Evaluation of the implant type tissue-engineered cartilage by scanning acoustic microscopy

Yoko Tanaka; Yoshifumi Saijo; Yuko Fujihara; Hisayo Yamaoka; Satoru Nishizawa; Satoru Nagata; Toru Ogasawara; Yukiyo Asawa; Tsuyoshi Takato; Kazuto Hoshi

The tissue-engineered cartilages after implantation were nonuniform tissues which were mingling with biodegradable polymers, regeneration cartilage and others. It is a hard task to evaluate the biodegradation of polymers or the maturation of regenerated tissues in the transplants by the conventional examination. Otherwise, scanning acoustic microscopy (SAM) system specially developed to measure the tissue acoustic properties at a microscopic level. In this study, we examined acoustic properties of the tissue-engineered cartilage using SAM, and discuss the usefulness of this devise in the field of tissue engineering. We administered chondrocytes/atelocollagen mixture into the scaffolds of various polymers, and transplanted the constructs in the subcutaneous areas of nude mice for 2 months. We harvested them and examined the sound speed and the attenuation in the section of each construct by the SAM. As the results, images mapping the sound speed exhibited homogenous patterns mainly colored in blue, in all the tissue-engineered cartilage constructs. Contrarily, the images of the attenuation by SAM showed the variation of color ranged between blue and red. The low attenuation area colored in red, which meant hard materials, were corresponding to the polymer remnant in the toluidine blue images. The localizations of blue were almost similar with the metachromatic areas in the histology. In conclusion, the SAM is regarded as a useful tool to provide the information on acoustic properties and their localizations in the transplants that consist of heterogeneous tissues with various components.


Journal of Biomedical Materials Research Part A | 2009

Selection of highly osteogenic and chondrogenic cells from bone marrow stromal cells in biocompatible polymer-coated plates.

Guangyao Liu; Kumiko Iwata; Toru Ogasawara; Junji Watanabe; Kyoko Fukazawa; Kazuhiko Ishihara; Yukiyo Asawa; Yuko Fujihara; Ung-il Chung; Toru Moro; Yoshio Takatori; Tsuyoshi Takato; Kozo Nakamura; Hiroshi Kawaguchi; Kazuto Hoshi

To enrich the subpopulation that preserves self-renewal and multipotentiality from conventionally prepared bone marrow stromal cells (MSCs), we attempted to use 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer-coated plates that selected the MSCs with strong adhesion ability and evaluated the proliferation ability or osteogenic/chondrogenic potential of the MPC polymer-selected MSCs. The number of MSCs that were attached to the MPC polymer-coated plates decreased with an increase in the density of MPC unit (0-10%), whereas no significant difference in the proliferation ability was seen among these cells. The surface epitopes of CD29, CD44, CD105, and CD166, and not CD34 or CD45, were detectable in the cells of all MPC polymer-coated plates, implying that they belong to the MSC category. In the osteogenic and chondrogenic induction, the MSCs selected by the 2-5% MPC unit composition showed higher expression levels of osteoblastic and chondrocytic markers (COL1A1/ALP, or COL2A1/COL10A1/Sox9) at passage 2, compared with those of 0-1% or even 10% MPC unit composition, while the enhanced effects continued by passage 5. The selection based on the adequate cell adhesiveness by the MPC polymer-coated plates could improve the osteogenic and chondrogenic potential of MSCs, which would provide cell sources that can be used to treat the more severe and various bone/cartilage diseases.

Collaboration


Dive into the Yukiyo Asawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Watanabe

National Institute for Materials Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge