Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuko Akitsuki is active.

Publication


Featured researches published by Yuko Akitsuki.


PLOS ONE | 2012

Brain Training Game Improves Executive Functions and Processing Speed in the Elderly: A Randomized Controlled Trial

Rui Nouchi; Yasuyuki Taki; Hikaru Takeuchi; Hiroshi Hashizume; Yuko Akitsuki; Yayoi Shigemune; Atsushi Sekiguchi; Yuka Kotozaki; Takashi Tsukiura; Yukihito Yomogida; Ryuta Kawashima

Background The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly. Methods and Results Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention. Conclusions Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet. Trial Registration UMIN Clinical Trial Registry 000002825


NeuroImage | 2006

Multiple brain networks for visual self-recognition with different sensitivity for motion and body part.

Motoaki Sugiura; Yuko Sassa; Hyeonjeong Jeong; Naoki Miura; Yuko Akitsuki; Kaoru Horie; Shigeru Sato; Ryuta Kawashima

Multiple brain networks may support visual self-recognition. It has been hypothesized that the left ventral occipito-temporal cortex processes ones own face as a symbol, and the right parieto-frontal network processes self-image in association with motion-action contingency. Using functional magnetic resonance imaging, we first tested these hypotheses based on the prediction that these networks preferentially respond to a static self-face and to moving ones whole body, respectively. Brain activation specifically related to self-image during familiarity judgment was compared across four stimulus conditions comprising a two factorial design: factor Motion contrasted picture (Picture) and movie (Movie), and factor Body part a face (Face) and whole body (Body). Second, we attempted to segregate self-specific networks using a principal component analysis (PCA), assuming an independent pattern of inter-subject variability in activation over the four stimulus conditions in each network. The bilateral ventral occipito-temporal and the right parietal and frontal cortices exhibited self-specific activation. The left ventral occipito-temporal cortex exhibited greater self-specific activation for Face than for Body, in Picture, consistent with the prediction for this region. The activation profiles of the right parietal and frontal cortices did not show preference for Movie Body predicted by the assumed roles of these regions. The PCA extracted two cortical networks, one with its peaks in the right posterior, and another in frontal cortices; their possible roles in visuo-spatial and conceptual self-representations, respectively, were suggested by previous findings. The results thus supported and provided evidence of multiple brain networks for visual self-recognition.


Journal of Cognitive Neuroscience | 2006

Cortical Mechanisms Involved in the Processing of Verbs: An fMRI Study

Satoru Yokoyama; Tadao Miyamoto; Jorge J. Riera; Jungho Kim; Yuko Akitsuki; Kazuki Iwata; Kei Yoshimoto; Kaoru Horie; Shigeru Sato; Ryuta Kawashima

In this study, we investigated two aspects of verb processing: first, whether verbs are processed differently from nouns; and second, how verbal morphology is processed. For this purpose, we used functional magnetic resonance imaging to compare three types of lexical processing in Japanese: the processing of nouns, unmarked active verbs, and inflected passive verbs. Twenty-eight healthy subjects were shown a lexical item and asked to judge whether the presented item was a legal word. Although all three conditions activated the bilateral inferior frontal, occipital, the left middle, and inferior temporal cortices, we found differences in the degree of activation for each condition. Verbs elicited greater activation in the left middle temporal gyrus than nouns, and inflected verbs showed greater activation in the left inferior frontal gyrus than unmarked verbs. This study demonstrates that although verbs are basically processed in the same cortical network as nouns, nouns and verbs elicit different degrees of activation due to the cognitive demands involved in lexical semantic processing. Furthermore, this study also shows that the left inferior frontal cortex is related to the processing of verbal inflectional morphology.


NeuroImage | 2006

Cortical mechanisms of person representation: Recognition of famous and personally familiar names

Motoaki Sugiura; Yuko Sassa; Jobu Watanabe; Yuko Akitsuki; Yasuhiro Maeda; Yoshihiko Matsue; Hiroshi Fukuda; Ryuta Kawashima

Personally familiar people are likely to be represented more richly in episodic, emotional, and behavioral contexts than famous people, who are usually represented predominantly in semantic context. To reveal cortical mechanisms supporting this differential person representation, we compared cortical activation during name recognition tasks between personally familiar and famous names, using an event-related functional magnetic resonance imaging (fMRI). Normal subjects performed familiar- or unfamiliar-name detection tasks during visual presentation of personally familiar (Personal), famous (Famous), and unfamiliar (Unfamiliar) names. The bilateral temporal poles and anterolateral temporal cortices, as well as the left temporoparietal junction, were activated in the contrasts Personal-Unfamiliar and Famous-Unfamiliar to a similar extent. The bilateral occipitotemporoparietal junctions, precuneus, and posterior cingulate cortex showed activation in the contrasts Personal-Unfamiliar and Personal-Famous. Together with previous findings, differential activation in the occipitotemporoparietal junction, precuneus, and posterior cingulate cortex between personally familiar and famous names is considered to reflect differential person representation. The similar extent of activation for personally familiar and famous names in the temporal pole and anterolateral temporal cortex is consistent with the associative role of the anterior temporal cortex in person identification, which has been conceptualized as a person identity node in many models of person identification. The left temporoparietal junction was considered to process familiar written names. The results illustrated the neural correlates of the person representation as a network of discrete regions in the bilateral posterior cortices, with the anterior temporal cortices having a unique associative role.


Journal of Cognitive Neuroscience | 2011

Effects of aging on hippocampal and anterior temporal activations during successful retrieval of memory for face-name associations

Takashi Tsukiura; Atsushi Sekiguchi; Yukihito Yomogida; Seishu Nakagawa; Yayoi Shigemune; Toshimune Kambara; Yuko Akitsuki; Yasuyuki Taki; Ryuta Kawashima

Memory for face–name associations is an important type of memory in our daily lives, and often deteriorates in older adults. Although difficulty retrieving face–name associations is often apparent in the elderly, there is little neuroscientific evidence of age-related decline in this memory. The current fMRI study investigated differences in brain activations between healthy young and older adults during the successful retrieval of peoples names (N) and job titles (J) associated with faces. During encoding, participants viewed unfamiliar faces, each paired with a job title and name. During retrieval, each learned face was presented with two job titles or two names, and participants were required to choose the correct job title or name. Retrieval success activity (RSA) was identified by comparing retrieval-phase activity for hits versus misses in N and J, and the RSAs in each task were compared between young and older adults. The study yielded three main findings. First, the hippocampus showed significant RSA in both tasks of N and J, and the activity was greater for young compared to older subjects. Second, the left anterior temporal lobe (ATL) showed greater RSA in N than in J, but there was no age difference in the activity in this region. Third, functional connectivity between hippocampal and ATL activities in both retrieval tasks was higher for young than for older adults. Taken together, age-related differences in hippocampal activities and hippocampus–ATL connectivity could contribute to age-related decline in relational memory and to complaints of poor retrieval of peoples names by older adults.


Journal of Cognitive Neuroscience | 2009

Anatomical segregation of representations of personally familiar and famous people in the temporal and parietal cortices

Motoaki Sugiura; Yuko Sassa; Jobu Watanabe; Yuko Akitsuki; Yasuhiro Maeda; Yoshihiko Matsue; Ryuta Kawashima

Person recognition has been assumed to entail many types of person-specific cognitive responses, including retrieval of knowledge, episodic recollection, and emotional responses. To demonstrate the cortical correlates of this modular structure of multimodal person representation, we investigated neural responses preferential to personally familiar people and responses dependent on familiarity with famous people in the temporal and parietal cortices. During functional magnetic resonance imaging (fMRI) measurements, normal subjects recognized personally familiar names (personal) or famous names with high or low degrees of familiarity (high or low, respectively). Effects of familiarity with famous people (i.e., high–low) were identified in the bilateral angular gyri, the left supramarginal gyrus, the middle part of the bilateral posterior cingulate cortices, and the left precuneus. Activation preferentially relevant to personally familiar people (i.e., personal–high) was identified in the bilateral temporo-parietal junctions, the right anterolateral temporal cortices, posterior middle temporal gyrus, posterior cingulate cortex (with a peak in the posterodorsal part), and the left precuneus; these activation foci exhibited varying degrees of activation for high and low names. An equivalent extent of activation was observed for all familiar names in the bilateral temporal poles, the left orbito-insular junction, the middle temporal gyrus, and the anterior part of the posterior cingulate cortex. The results demonstrated that distinct cortical areas supported different types of cognitive responses, induced to different degrees during recognition of famous and personally familiar people, providing neuroscientific evidence for the modularity of multimodal person representation.


PLOS ONE | 2013

Compensatory effort parallels midbrain deactivation during mental fatigue: an fMRI study.

Seishu Nakagawa; Motoaki Sugiura; Yuko Akitsuki; S. M. Hadi Hosseini; Yuka Kotozaki; Carlos Makoto Miyauchi; Yukihito Yomogida; Ryoichi Yokoyama; Hikaru Takeuchi; Ryuta Kawashima

Fatigue reflects the functioning of our physiological negative feedback system, which prevents us from overworking. When fatigued, however, we often try to suppress this system in an effort to compensate for the resulting deterioration in performance. Previous studies have suggested that the effect of fatigue on neurovascular demand may be influenced by this compensatory effort. The primary goal of the present study was to isolate the effect of compensatory effort on neurovascular demand. Healthy male volunteers participated in a series of visual and auditory divided attention tasks that steadily increased fatigue levels for 2 hours. Functional magnetic resonance imaging scans were performed during the first and last quarter of the study (Pre and Post sessions, respectively). Tasks with low and high attentional load (Low and High conditions, respectively) were administrated in alternating blocks. We assumed that compensatory effort would be greater under the High-attentional-load condition compared with the Low-load condition. The difference was assessed during the two sessions. The effect of compensatory effort on neurovascular demand was evaluated by examining the interaction between load (High vs. Low) and time (Pre vs. Post). Significant fatigue-induced deactivation (i.e., Pre>Post) was observed in the frontal, temporal, occipital, and parietal cortices, in the cerebellum, and in the midbrain in both the High and Low conditions. The interaction was significantly greater in the High than in the Low condition in the midbrain. Neither significant fatigue-induced activation (i.e., Pre[PreE– PostE]) may reflect suppression of the negative feedback system that normally triggers recuperative rest to maintain homeostasis.


Brain and Language | 2006

Brain activation during the course of sentence comprehension.

Naho Ikuta; Motoaki Sugiura; Yuko Sassa; Jobu Watanabe; Yuko Akitsuki; Kazuki Iwata; Naoki Miura; Hideyuki Okamoto; Yoshihiko Watanabe; Shigeru Sato; Kaoru Horie; Yoshihiko Matsue; Ryuta Kawashima

The purpose of this study is to determine, by functional magnetic resonance imaging, how the activated regions of the brain change as a Japanese sentence is presented in a grammatically correct order. In this study, we presented constituents of a sentence to Japanese participants one by one at regular intervals. The results showed that the left lingual gyrus was significantly activated at the beginning of the sentence, then the left inferior frontal gyrus and left supplementary motor area, in the middle of the sentence, and the left inferior temporal gyrus, at the end of the sentence. We suggest that these brain areas are involved in sentence comprehension in this temporal order.


BMC Complementary and Alternative Medicine | 2013

Activity in the primary somatosensory cortex induced by reflexological stimulation is unaffected by pseudo-information: a functional magnetic resonance imaging study.

Naoki Miura; Yuko Akitsuki; Atsushi Sekiguchi; Ryuta Kawashima

BackgroundReflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated.MethodsThirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy.ResultsOur results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information. The results also indicate that the relationship between the reflex area and the projection to the primary somatosensory cortex has a lateral pattern that differs from that of the actual somatotopical representation of the body.ConclusionThese findings suggest that a robust relationship exists between neural processing of somatosensory percepts for reflexological stimulation and the tactile sensation of a specific reflex area.


Neuroscience Research | 2010

Age-related differences in brain activity during successful encoding of memory for person identity information

Takashi Tsukiura; Yayoi Shigemune; Toshimune Kambara; Atsushi Sekiguchi; Yukihito Yomogida; Seishu Nakagawa; Yuko Akitsuki; Yasuyuki Taki; Ryuta Kawashima

We examined age-related differences in the motor function representation of 60 healthy right-handed adults during two simple finger extension/flexion tasks, alternating hand movement (AHM) and active vs. rest (AVR), by using functional near infrared spectroscopy. Our analysis focused on the age-related differences in spatial and temporal features of hemodynamic responses to these tasks. The hemodynamic responses were measured by the relative changes in the concentrations of oxygenated hemoglobin ( [oxyHb]) and deoxygenated hemoglobin ( [deoxy-Hb]).There was a significant increase in the size of the activation area for [oxy-Hb] and [deoxy-Hb] in the bilateral primary sensorimotor area (SM1) and prefrontal area (PFA) with age under both AVR conditions. We also found an increase in the size of the activation area for [deoxy-Hb] in the either or both left and right SM1 for both AHM conditions. The fluctuation in hemodynamic response for the [oxy-Hb] and [deoxy-Hb] in the bilateral SM1 and PFA decreased with age. These age dependencies can be accounted for by considering restingstate activity and compensatory neuronal recruitment. Our results supported the importance of resting states in the emergence of age-related differences in the motor function representation.

Collaboration


Dive into the Yuko Akitsuki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge