Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuko Kitahara is active.

Publication


Featured researches published by Yuko Kitahara.


Behavioural Brain Research | 2010

Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood

Daisuke Ibi; Taku Nagai; Hiroyuki Koike; Yuko Kitahara; Hiroyuki Mizoguchi; Minae Niwa; Hanna Jaaro-Peled; Atsumi Nitta; Yukio Yoneda; Toshitaka Nabeshima; Akira Sawa; Kiyofumi Yamada

Gene-environment interaction may play a role in the etiology of schizophrenia. Transgenic mice expressing dominant-negative DISC1 (DN-DISC1 mice) show some histological and behavioral endophenotypes relevant to schizophrenia. Viral infection during neurodevelopment provides a major environmental risk for schizophrenia. Neonatal injection of polyriboinosinic-polyribocytidylic acid (polyI:C), which mimics innate immune responses elicited by viral infection, leads to schizophrenia-like behavioral alteration in mice after puberty. To study how gene-environmental interaction during neurodevelopment results in phenotypic changes in adulthood, we treated DN-DISC1 mice or wild-type littermates with injection of polyI:C during the neonatal stage, according to the published method, respectively, and the behavioral and histological phenotypes were examined in adulthood. We demonstrated that neonatal polyI:C treatment in DN-DISC1 mice resulted in the deficits of short-term, object recognition, and hippocampus-dependent fear memories after puberty, although polyI:C treatment by itself had smaller influences on wild-type mice. Furthermore, polyI:C-treated DN-DISC1 mice exhibited signs of impairment of social recognition and interaction, and augmented susceptibility to MK-801-induced hyperactivity as compared with vehicle-treated wild-type mice. Of most importance, additive effects of polyI:C and DN-DISC1 were observed by a marked decrease in parvalbumin-positive interneurons in the medial prefrontal cortex. These results suggest that combined effect of neonatal polyI:C treatment and DN-DISC1 affects some behavioral and histological phenotypes in adulthood.


Neuroscience Research | 2009

Neonatal polyI:C treatment in mice results in schizophrenia-like behavioral and neurochemical abnormalities in adulthood

Daisuke Ibi; Taku Nagai; Yuko Kitahara; Hiroyuki Mizoguchi; Hiroyuki Koike; Anna Shiraki; Kazuhiro Takuma; Hiroyuki Kamei; Yukihiro Noda; Atsumi Nitta; Toshitaka Nabeshima; Yukio Yoneda; Kiyofumi Yamada

It has been reported that viral infection in the first and second trimesters of pregnancy in humans increases the risk of subsequently developing schizophrenia. To develop a mouse model of immune activation during the early postnatal period, neonatal ICR mice were repeatedly injected with polyriboinosinic-polyribocytidilic acid (polyI:C; an inducer of strong innate immune responses) for 5 days (postnatal day 2-6) which may correspond, in terms of brain development, to the early second trimester in human. Cognitive and emotional behavior as well as the extracellular level of glutamate in the hippocampus were analyzed at the age of 10-12 weeks old. PolyI:C-treated mice showed anxiety-like behavior, impairment of object recognition memory and social behavior, and sensorimotor gating deficits, as compared to the saline-treated control group. Depolarization-evoked glutamate release in the hippocampus was impaired in polyI:C-treated mice compared to saline-treated control mice. Furthermore, to investigate the effect of neonatal immune activation on the expression levels of schizophrenia-related genes, we analyzed mRNA levels in the hippocampus 2 and 24h after polyI:C treatment. No significant differences or only transient and marginal changes were observed between polyI:C-treated and saline-treated control mice in the expression levels of schizophrenia-related genes in the hippocampus.


Behavioural Brain Research | 2011

Effects of antipsychotics on the behavioral deficits in human dominant-negative DISC1 transgenic mice with neonatal polyI: C treatment

Taku Nagai; Yuko Kitahara; Daisuke Ibi; Toshitaka Nabeshima; Akira Sawa; Kiyofumi Yamada

Interactions of environmental and genetic factors may play a role in the pathoetiology of schizophrenia. We have recently developed a novel animal model of mental disorders such as schizophrenia by inducing abnormal immune response during the perinatal period in mice with overexpression of the human dominant-negative form of disrupted-in-schizophrenia 1 (DN-DISC1). In the present study, we investigated the effects of antipsychotics on the behavioral deficits in this animal model for mental disorders with gene-environment interaction. Neonatal DN-DISC1 transgenic (DN-DISC1 tg) mice were repeatedly injected with polyriboinosinic-polyribocytidylic acid (polyI:C) for 5 days from postnatal days 2 to 6. The behavioral analyses were performed in adulthood. Clozapine (3mg/kg) or haloperidol (1mg/kg) was administered orally once a day from 1 week before starting a series of behavioral experiments and continued until the end of the study. Cognitive impairment in polyI:C-treated DN-DISC1 tg mice was improved by repeated administration of clozapine while haloperidol had no effect. Both antipsychotics suppressed the augmentation of MK-801-induced hyperactivity in the model mice. Neither clozapine nor haloperidol ameliorated the impairments of social behaviors in polyI:C-treated DN-DISC1 tg mice. These results suggest that the polyI:C-treated DN-DISC tg mice are quite unique as an animal model for mental disorders. Furthermore, this mouse model may be useful for the screening of potential antipsychotic compounds that could be more effective than clozapine in ameliorating negative symptoms and cognitive impairment in schizophrenia.


Neuroscience Letters | 2010

Dysfunction of dopamine release in the prefrontal cortex of dysbindin deficient sandy mice: An in vivo microdialysis study

Taku Nagai; Yuko Kitahara; Anna Shiraki; Takao Hikita; Shinichiro Taya; Kozo Kaibuchi; Kiyofumi Yamada

Dystrobrevin binding protein-1 gene (DTNBP1), which encodes dysbindin protein, has been identified as a schizophrenia susceptibility gene. Dysbindin has been shown to contribute to the regulation of exocytosis and formation of synaptic vesicles. Although hypofrontality in schizophrenia underlies its pathophysiology, the molecular function of dysbindin in synaptic neurotransmission remains unclear. In the present study, we investigated depolarization-evoked dopamine (DA) and serotonin (5-HT) release in the prefrontal cortex (PFC) of sandy (sdy) mice, which have a deletion mutation in the gene encoding DTNBP1. In vivo microdialysis analysis revealed that extracellular DA levels in the PFC of wild-type mice were increased by 60mM KCl stimulation, and the KCl-evoked DA release was significantly decreased in sdy mice compared with wild-type mice. Extracellular 5-HT levels in the PFC of wild-type mice were also increased by 60mM KCl stimulation. The KCl-evoked 5-HT release did not differ between wild-type and sdy mice. There was no difference in basal levels of DA and 5-HT before the stimulation between two groups. Behavioral sensitization after repeated methamphetamine (METH) treatment was significantly reduced in sdy mice compared with wild-type mice whereas no difference was observed in METH-induced hyperlocomotion between two groups. These results suggest that dysbindin may have a role in the regulation of depolarization-evoked DA release in the PFC and in the development of behavioral sensitization induced by repeated METH treatment.


Neuroscience | 2007

Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats

Kazuhiro Takuma; Y. Hoshina; Sawako Arai; Y. Himeno; A. Matsuo; Yoko Funatsu; Yuko Kitahara; Daisuke Ibi; M. Hayase; Hiroyuki Kamei; Hiroyuki Mizoguchi; Taku Nagai; Koji Koike; Masaki Inoue; Kiyofumi Yamada

We have recently found that a combination of ovariectomy (OVX) and chronic restraint stress causes cognitive dysfunction and reduces hippocampal CA3 neurons in female rats and that estrogen replacement suppresses the OVX/stress-induced behavioral and morphological changes. In this study, we examined the effect of Ginkgo biloba extract (EGb 761), a popular herbal supplement, on the cognitive dysfunction and neuromorphological change in OVX/stress-subjected rats. Female Fisher 344 rats were randomly divided into three groups: vehicle-treated OVX, EGb 761 (50 mg/kg) -treated OVX and vehicle-treated sham-operated control groups. Two months after ovariectomy, all animals received restraint stress for 21 days (6 h/day), and were then subjected to a novel object recognition test followed by morphological examination by Nissl staining. EGb 761 was orally administered once daily until the behavioral analysis was done. Treatment with EGb 761 improved memory impairment and neuronal loss of hippocampus in the OVX/stress-subjected group in the same ways as 17beta-estradiol. On the other hand, EGb 761 did not affect the loss of bone mineral density and increase in body weight after OVX, although 17beta-estradiol attenuated them. These results have important implications for neuroprotective and cognition enhancing effects of EGb 761 in postmenopausal women and suggest that the effects are mediated by a different mechanism from estrogen.


Neuroscience | 2012

Combination of chronic stress and ovariectomy causes conditioned fear memory deficits and hippocampal cholinergic neuronal loss in mice

Kazuhiro Takuma; Hiroyuki Mizoguchi; Yoko Funatsu; Y. Hoshina; Y. Himeno; Emiko Fukuzaki; Yuko Kitahara; Sawako Arai; Daisuke Ibi; Hiroyuki Kamei; Toshio Matsuda; Koji Koike; Masaki Inoue; Taku Nagai; Kiyofumi Yamada

We have recently found that the combination of ovariectomy (OVX) and chronic restraint stress (CS) causes hippocampal pyramidal cell loss and cognitive dysfunction in female rats and that estrogen replacement prevents the OVX/CS-induced morphological and behavioral changes. In this study, to clarify the mechanisms underlying the OVX/CS-mediated memory impairment further, we examined the roles of cholinergic systems in the OVX/CS-induced memory impairment in mice. Female Slc:ICR strain mice were randomly divided into two groups: OVX and sham-operated groups. Two weeks after the operation, the mice of each group were further assigned to CS (6 h/day) or non-stress group. Following the 3-week-stress period, all mice were subjected to contextual fear conditioning, and context- and tone-dependent memory tests were conducted 1 or 24 h after the conditioning. Overburden with 3 weeks of CS from 2 weeks after OVX impaired context- and tone-dependent freezing and the OVX/CS caused significant Nissl-stained neuron-like cell loss in the hippocampal CA3 region, although OVX and CS alone did not cause such behavioral and histological changes. Replacement of 17β-estradiol for 5 weeks after OVX suppressed OVX/CS-induced memory impairment and hippocampal Nissl-positive cell loss. Furthermore, the OVX/CS mice exhibited a significant decrease in choline acetyltransferase in the hippocampus compared with other groups. The cholinesterase inhibitors donepezil and galantamine ameliorated OVX/CS-induced memory impairment. These data suggest that cholinergic dysfunction may be involved in the OVX/CS-induced conditioned fear memory impairment. Overall, our findings suggest that the OVX/CS mouse model is useful to study the mechanisms underlying estrogen loss-induced memory deficits.


Journal of Pharmacological Sciences | 2012

Placental Extract Improves Hippocampal Neuronal Loss and Fear Memory Impairment Resulting From Chronic Restraint Stress in Ovariectomized Mice

Kazuhiro Takuma; Hiroyuki Mizoguchi; Yoko Funatsu; Yuko Kitahara; Daisuke Ibi; Hiroyuki Kamei; Toshio Matsuda; Koji Koike; Masaki Inoue; Taku Nagai; Kiyofumi Yamada

Abstract We have recently found that combination of ovariectomy (OVX) and chronic restraint stress causes cognitive dysfunction and reduces hippocampal CA3 neurons in female rats and mice and that estrogen replacement and chronic treatment with Ginkgo biloba extract EGb 761 suppress the OVX/stress-induced behavioral and morphological changes. In this study, we examined the effect of placental extract on the memory impairment and neuromorphological change in OVX/stress-subjected mice. Female Slc:ICR strain mice were randomly divided into four groups: vehicle-treated OVX, porcine placental extract (120 and 2160 mg/kg)-treated OVX, and sham-operated control groups. Two weeks after surgical operation, OVX mice underwent restraint stress for 21 days (6 h/day), and all animals were then subjected to a contextual fear conditioning test followed by morphological examination by Nissl staining. Placental extract was orally administered once daily until the behavioral analysis was carried out. Chronic treatment with both doses of placental extract improved the OVX/stress-induced fear memory impairment and Nissl-positive cell loss of the hippocampal CA3 region, although it did not affect the loss of bone mineral density and increase in body weight after OVX. These results have important implications for the neuroprotective and cognition-enhancing effects of placental extract in postmenopausal women.


Neurochemistry International | 2008

Ovariectomy increases neuronal amyloid-β binding alcohol dehydrogenase level in the mouse hippocampus

Emiko Fukuzaki; Kazuhiro Takuma; Yoko Funatsu; Y. Himeno; Yuko Kitahara; Bin Gu; Hiroyuki Mizoguchi; Daisuke Ibi; Koji Koike; Masaki Inoue; Shi Du Yan; Kiyofumi Yamada

Ovarian hormone decline after menopause may influence cognitive performance and increase the risk for Alzheimers disease (AD) in women. Amyloid-beta peptide (Abeta) has been proposed to be the primary cause of AD. In this study, we examined whether ovariectomy (OVX) could affect the levels of cofactors Abeta-binding alcohol dehydrogenase (ABAD) and receptor for advanced glycation endproducts (RAGE), which have been reported to potentiate Abeta-mediated neuronal perturbation, in mouse hippocampus, correlating with estrogen and Abeta levels. Female ICR mice were randomly divided into ovariectomized or sham-operated groups, and biochemical analyses were carried out at 5 weeks after the operation. OVX for 5 weeks significantly decreased hippocampal 17beta-estradiol level, while it tended to reduce the hormone level in serum, compared with the sham-operated control. In contrast, OVX did not affect hippocampal Abeta(1-40) level, although it significantly increased serum Abeta(1-40) level. Furthermore, we demonstrated that OVX increased hippocampal ABAD level in neurons, but not astrocytes, while it did not affect RAGE level. These findings suggest that the expression of neuronal ABAD depends on estrogen level in the hippocampus and the increase in serum Abeta and hippocampal ABAD induced by ovarian hormone decline may be associated with pre-stage of memory deficit in postmenopausal women and Abeta-mediated AD pathology.


Neuroscience Letters | 2008

Enhanced activity of hippocampal BACE1 in a mouse model of postmenopausal memory deficits.

Emiko Fukuzaki; Kazuhiro Takuma; Y. Himeno; Shigeru Yoshida; Yoko Funatsu; Yuko Kitahara; Hiroyuki Mizoguchi; Daisuke Ibi; Koji Koike; Masaki Inoue; Kiyofumi Yamada

Ovarian hormone decline after menopause may influence cognitive performance and increase the risk for Alzheimers disease (AD) in women. We have recently demonstrated that a combination of ovariectomy and chronic stress (OVX/stress) causes hippocampus-associated cognitive dysfunction in mice. In this study, we examined whether OVX/stress could affect the levels of AD-related molecules in the mouse hippocampus. Female ICR mice were ovariectomized or sham-operated, and then randomly divided into a daily restraint stress (21 days, 6 h/day) or non-stress group. Although OVX or stress alone did not affect beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1) activity, OVX/stress increased activity in hippocampal CA1 and CA3 regions, compared with other groups. In contrast, OVX/stress did not affect gamma-secretase activity, Abeta(1-40), and phosphorylated-tau levels in the hippocampus. These findings suggest that a stressful life after menopause can influence the levels of AD-related molecules and that BACE1 is the most sensitive molecule for such a situation.


The Open Behavioral Science Journal | 2010

Alterations of Emotional and Cognitive Behaviors in Matrix Metalloproteinase-2 and -9-Deficient Mice

Hiroyuki Mizoguchi; Daisuke Ibi; Kazuhiro Takuma; Yuko Kitahara; Erika Toth; Jun Sato; Shigeyoshi Itohara; Toshitaka Nabeshima; Kiyofumi Yamada

Collaboration


Dive into the Yuko Kitahara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge