Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuko Nawa is active.

Publication


Featured researches published by Yuko Nawa.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Proteolytic Cleavage of High Mobility Group Box 1 Protein by Thrombin-Thrombomodulin Complexes

Takashi Ito; Ko-ichi Kawahara; Kohji Okamoto; Shingo Yamada; Minetsugu Yasuda; Hitoshi Imaizumi; Yuko Nawa; Xiaojie Meng; Binita Shrestha; Teruto Hashiguchi; Ikuro Maruyama

Objective—High mobility group box 1 protein (HMGB1) was identified as a mediator of endotoxin lethality. We previously reported that thrombomodulin (TM), an endothelial thrombin-binding protein, bound to HMGB1, thereby protecting mice from lethal endotoxemia. However, the fate of HMGB1 bound to TM remains to be elucidated. Methods and Results—TM enhanced thrombin-mediated cleavage of HMGB1. N-terminal amino acid sequence analysis of the HMGB1 degradation product demonstrated that thrombin cleaved HMGB1 at the Arg10-Gly11 bond. Concomitant with the cleavage of the N-terminal domain of HMGB1, proinflammatory activity of HMGB1 was significantly decreased (P<0.01). HMGB1 degradation products were detected in the serum of endotoxemic mice and in the plasma of septic patients with disseminated intravascular coagulation (DIC), indicating that HMGB1 could be degraded under conditions in which proteases were activated in the systemic circulation. Conclusions—TM not only binds to HMGB1 but also aids the proteolytic cleavage of HMGB1 by thrombin. These findings highlight the novel antiinflammatory role of TM, in which thrombin–TM complexes degrade HMGB1 to a less proinflammatory form.


Pain | 2002

Experimental incision-induced pain in human skin: effects of systemic lidocaine on flare formation and hyperalgesia

Mikito Kawamata; Toshiyuki Takahashi; Yuji Kozuka; Yuko Nawa; Kohki Nishikawa; Eichi Narimatsu; Hiroaki Watanabe; Akiyoshi Namiki

&NA; In order to try to gain a better understanding of the mechanisms of post‐operative pain, this study was designed to psychophysically determine physiological and pharmacological characteristics of experimental pain induced by a 4‐mm‐long incision through the skin, fascia and muscle in the volar forearm of humans. In experiment 1, the subjects (n=8) were administered lidocaine systemically (a bolus injection of 2 mg/kg for a period of 5 min followed by an intravenous infusion of 2 mg/kg/h for another 40 min), and then the incision was made. In experiment 2, cumulative doses of lidocaine (0.5–2 mg/kg) were systemically injected in the subjects (n=8) 30 min after the incision had been made, when primary and secondary hyperalgesia had fully developed. Spontaneous pain was assessed using the visual analog scale (VAS). Primary hyperalgesia was defined as mechanical pain thresholds to von Frey hair stimuli (from 7 to 151 mN) in the injured area. The area of secondary hyperalgesia to punctate mechanical stimuli was assessed using a rigid von Frey hair (151 mN). Flare formation was assessed in the first experiment using a laser doppler imager (LDI). Pain perception was maximal when the incision was made and then rapidly disappeared within 30 min after the incision had been made. Primary hyperalgesia was apparent at 15 min after the incision had been made and remained for 2 days. The incision resulted in a relatively large area of flare formation immediately after the incision had been made. The area of flare began to shrink within 15 min and was limited to a small area around the injured area at 30 min after incision. Secondary hyperalgesia was apparent at 30 min after incision and persisted for 3 h after incision and then gradually disappeared over the next 3 h. In experiment 1, pre‐traumatic treatment with systemic lidocaine suppressed primary hyperalgesia only during the first 1 h after the incision had been made. The lidocaine suppressed the development of flare formation without affecting the pain rating when the incision was made. The development of secondary hyperalgesia continued to be suppressed after completion of the lidocaine infusion. In experiment 2, post‐traumatic treatment with lidocaine temporarily suppressed primary as well as secondary hyperalgesia that had fully developed; however, the primary and secondary hyperalgesia again became apparent after completion of the lidocaine administration. These findings suggest that pre‐traumatic treatment with lidocaine reduces the excessive inputs from the injured peripheral nerves, thus suppressing development of flare formation and secondary hyperalgesia through peripheral and central mechanisms, respectively. Pre‐traumatic treatment with lidocaine would temporarily stabilize the sensitized nerves in the injured area, but the nerves would be sensitized after completion of the administration. Post‐traumatic treatment with lidocaine reduced primary and secondary hyperalgesia that had fully developed. However, the finding that the suppressive effect of lidocaine on secondary hyperalgesia was temporary suggests that the development and maintenance of secondary hyperalgesia are caused by different mechanisms.


Biochemical and Biophysical Research Communications | 2009

Edaravone attenuates cerebral ischemic injury by suppressing aquaporin-4

Kiyoshi Kikuchi; Salunya Tancharoen; Fumiyo Matsuda; Kamal Krishna Biswas; Takashi Ito; Yoko Morimoto; Yoko Oyama; Kazunori Takenouchi; Naoki Miura; Noboru Arimura; Yuko Nawa; Xiaojie Meng; Binita Shrestha; Shinichiro Arimura; Masahiro Iwata; Kentaro Mera; Hisayo Sameshima; Yoshiko Ohno; Ryuichi Maenosono; Yutaka Tajima; Terukazu Kuramoto; Kenji Nakayama; Minoru Shigemori; Yoshihiro Yoshida; Teruto Hashiguchi; Ikuro Maruyama; Ko-ichi Kawahara

Aquaporin-4 (AQP4) plays a role in the generation of post-ischemic edema. Pharmacological modulation of AQP4 function may thus provide a novel therapeutic strategy for the treatment of stroke, tumor-associated edema, epilepsy, traumatic brain injury, and other disorders of the central nervous system (CNS) associated with altered brain water balance. Edaravone, a free radical scavenger, is used for the treatment of acute ischemic stroke (AIS) in Japan. In this study, edaravone significantly reduced the infarct area and improved the neurological deficit scores at 24h after reperfusion in a rat transient focal ischemia model. Furthermore, edaravone markedly reduced AQP4 immunoreactivity and protein levels in the cerebral infarct area. In light of observations that edaravone specifically inhibited AQP4 in a rat transient focal ischemia model, we propose that edaravone might reduce cerebral edema through the inhibition of AQP4 expression following cerebral infarction.


Cardiovascular Pathology | 2008

C-reactive protein induces high-mobility group box-1 protein release through activation of p38MAPK in macrophage RAW264.7 cells

Ko-ichi Kawahara; Kamal Krishna Biswas; Masako Unoshima; Takashi Ito; Kiyoshi Kikuchi; Yoko Morimoto; Masahiro Iwata; Salunya Tancharoen; Yoko Oyama; Kazunori Takenouchi; Yuko Nawa; Noboru Arimura; Meng Xiao Jie; Binita Shrestha; Naoki Miura; Toshiaki Shimizu; Kentaro Mera; Shinichiro Arimura; Noboru Taniguchi; Hideo Iwasaka; Sonshin Takao; Teruto Hashiguchi; Ikuro Maruyama

BACKGROUND C-reactive protein (CRP) is widely used as a sensitive biomarker for inflammation. Increasing evidence suggests that CRP plays a role in inflammation. High-mobility group box-1 (HMGB1), a primarily nuclear protein, is passively released into the extracellular milieu by necrotic or damaged cells and is actively secreted by monocytes/macrophages. Extracellular HMGB1 as a potent inflammatory mediator has stimulated immense curiosity in the field of inflammation research. However, the molecular dialogue implicated between CRP and HMGB1 in delayed inflammatory processes remains to be explored. METHODS AND RESULTS The levels of HMGB1 in culture supernatants were determined by Western blot analysis and enzyme-linked immunosorbent assay in macrophage RAW264.7 cells. Purified CRP induced the release of HMGB1 in a dose- and time-dependent fashion. Immunofluorescence analysis revealed nuclear translocation of HMGB1 in response to CRP. The binding of CRP to the Fc gamma receptor in RAW264.7 cells was confirmed by fluorescence-activated cell sorter analysis. Pretreatment of cells with IgG-Fc fragment, but not IgG-Fab fragment, efficiently blocked this binding. CRP triggered the activation of p38MAPK and ERK1/2, but not Jun N-terminal kinase. Moreover, both p38MAPK inhibitor SB203580 and small interfering RNA significantly suppressed the release of HMGB1, but not the MEK1/2 inhibitor U-0126. CONCLUSION We demonstrated for the first time that CRP, a prominent risk marker for inflammation including atherosclerosis, could induce the active release of HMGB1 by RAW264.7 cells through Fc gamma receptor/p38MAPK signaling pathways, thus implying that CRP plays a crucial role in the induction, amplification, and prolongation of inflammatory processes, including atherosclerotic lesions.


Journal of Pharmacology and Experimental Therapeutics | 2009

The Free Radical Scavenger Edaravone Rescues Rats from Cerebral Infarction by Attenuating the Release of High-Mobility Group Box-1 in Neuronal Cells

Kiyoshi Kikuchi; Ko-ichi Kawahara; Salunya Tancharoen; Fumiyo Matsuda; Yoko Morimoto; Takashi Ito; Kamal Krishna Biswas; Kazunori Takenouchi; Naoki Miura; Yoko Oyama; Yuko Nawa; Noboru Arimura; Masahiro Iwata; Yutaka Tajima; Terukazu Kuramoto; Kenji Nakayama; Minoru Shigemori; Yoshihiro Yoshida; Teruto Hashiguchi; Ikuro Maruyama

Edaravone, a potent free radical scavenger, is clinically used for the treatment of cerebral infarction in Japan. Here, we examined the effects of edaravone on the dynamics of high-mobility group box-1 (HMGB1), which is a key mediator of ischemic-induced brain damage, during a 48-h postischemia/reperfusion period in rats and in oxygen-glucose-deprived (OGD) PC12 cells. HMGB1 immunoreactivity was observed in both the cytoplasm and the periphery of cells in the cerebral infarction area 2 h after reperfusion. Intravenous administration of 3 and 6 mg/kg edaravone significantly inhibited nuclear translocation and HMGB1 release in the penumbra area and caused a 26.5 ± 10.4 and 43.8 ± 0.5% reduction, respectively, of the total infarct area at 24 h after reperfusion. Moreover, edaravone also decreased plasma HMGB1 levels. In vitro, edaravone dose-dependently (1–10 μM) suppressed OGD- and H2O2-induced HMGB1 release in PC12 cells. Furthermore, edaravone (3–30 μM) blocked HMGB1-triggered apoptosis in PC12 cells. Our findings suggest a novel neuroprotective mechanism for edaravone that abrogates the release of HMGB1.


Biochemical and Biophysical Research Communications | 2009

Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells.

Kiyoshi Kikuchi; Ko-ichi Kawahara; Kamal Krishna Biswas; Takashi Ito; Salunya Tancharoen; Yoko Morimoto; Fumiyo Matsuda; Yoko Oyama; Kazunori Takenouchi; Naoki Miura; Noboru Arimura; Yuko Nawa; Xiaojie Meng; Binita Shrestha; Shinichiro Arimura; Masahiro Iwata; Kentaro Mera; Hisayo Sameshima; Yoshiko Ohno; Ryuichi Maenosono; Yoshihiro Yoshida; Yutaka Tajima; Terukazu Kuramoto; Kenji Nakayama; Minoru Shigemori; Teruto Hashiguchi; Ikuro Maruyama

High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.


Journal of Leukocyte Biology | 2009

Nucleophosmin may act as an alarmin: implications for severe sepsis.

Yuko Nawa; Ko-ichi Kawahara; Salunya Tancharoen; Xiaojie Meng; Hisayo Sameshima; Takashi Ito; Yoshiki Masuda; Hitoshi Imaizumi; Teruto Hashiguchi; Ikuro Maruyama

NPM is a major nucleolar multifunctional protein involved in ribosome biogenesis, centrosome duplication, cell‐cycle progression, apoptosis, cell differentiation, and sensing cellular stress. Alarmins are endogenous molecules released from activated cells and/or dying cells, which activate the immune system and cause severe damage to cells and tissue organs. In the present work, stimulation of cells with the alarmin‐inducible molecule endotoxin, for 16 h, resulted in NPM release into the culture supernatants of RAW264.7 cells, a murine macrophage cell line. Extracellular NPM was detected in the ascites of the CLP model. NPM was translocated into the cytoplasm from the nucleus in LPS ‐stimulated RAW264.7 cells; furthermore, NPM was detected in the cytosols of infiltrated macrophages in the CLP model. rNPM induced release of proinflammatory cytokines, TNF‐α, IL‐6, and MCP‐1, from RAW264.7 cells and increased the expression level of ICAM‐1 in HUVECs. NPM induced the phosphorylation of MAPKs in RAW264.7 cells. Our data indicate that NPM may have potent biological activities that contribute to systemic inflammation. Further investigations of the role of NPM may lead to new therapies for patients with septic shock or other inflammatory diseases.


International Journal of Immunopathology and Pharmacology | 2010

1,5-Anhydroglucitol attenuates cytokine release and protects mice with type 2 diabetes from inflammatory reactions.

Xiaojie Meng; Salunya Tancharoen; Ko-ichi Kawahara; Yuko Nawa; Shotaro Taniguchi; Teruto Hashiguchi; Ikuro Maruyama

1,5-anhydroglucitol (1,5-AG) decreases in diabetic patients and is used as a marker of glycemic control. Type 2 diabetic patients are susceptibile to lipopolysaccharides (LPS), which stimulate macrophages to release large quantities of tumor necrosis factor (TNF)-α and interleukin (IL)-6. This study examines the effects of 1,5-AG on lung inflammation induced by LPS and consequent systemic inflammation to determine whether the decrease of 1,5-AG concentration induces susceptibility to LPS. Before the challenge with LPS (1 mg/kg in vivo and 500 ng/ml in vitro), we pretreated db/db mice and RAW264.7 cells with 1,5-AG at 38.5 mg/kg and 500 μg/ml, respectively. The levels of IL-6, TNF-α, macrophage chemoattractant protein (MCP)-1 and IL-1β in the serum and in the cell supernatants were measured. We also measured macrophage recruitment and the expression of inducible nitric oxide synthase (iNOS) in pulmonary tissues. We found that 1,5-AG attenuated serum cytokine release and protected db/db mice from LPS-induced pulmonary inflammation. In addition, 1,5-AG suppressed cytokine release and iNOS expression by suppressing Akt/NF-κB activity in RAW264.7 cells. These results suggest that 1,5-AG may be a mediator in, as well as marker for diabetes, and 1,5-AG intake may confer tolerance to LPS in patients with type 2 diabetes.


Biochemical and Biophysical Research Communications | 2009

Attenuation of LPS-induced iNOS expression by 1,5-anhydro-D-fructose

Xiaojie Meng; Ko-ichi Kawahara; Kenji Matsushita; Yuko Nawa; Binita Shrestha; Kiyoshi Kikuchi; Hisayo Sameshima; Teruto Hashiguchi; Ikuro Maruyama

1,5-anhydro-d-fructose (1,5-AF), a monosaccharide formed from starch and glycogen, exhibits antioxidant and antibacterial activity, and inhibits cytokine release by attenuating NF-kappaB activation in LPS-stimulated mice. The present study examined whether 1,5-AF inhibits lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) in vitro and in vivo. We found that 1,5-AF significantly blocked the production of NO, and protein and mRNA expression of iNOS, and up-regulated IL-10 production in vitro. We also investigated the effects of 1,5-AF on acute lung inflammation in C57BL/6J mice. We found that protein and mRNA expression of iNOS in lung tissues were inhibited by 1,5-AF pretreatment. In addition, the serum level of IL-10 was upregulated by 1,5-AF. Collectively, the iNOS transcriptional and translational inhibitory effects of 1,5-AF seem to be prolonged and enhanced by the production of IL-10. These results suggest that 1,5-AF could be a useful adjunct in the treatment of acute lung inflammation.


Biochemical and Biophysical Research Communications | 2009

1,5-Anhydro-d-fructose attenuates lipopolysaccharide-induced cytokine release via suppression of NF-κB p65 phosphorylation

Xiaojie Meng; Ko-ichi Kawahara; Yuko Nawa; Naoki Miura; Binita Shrestha; Salunya Tancharoen; Hisayo Sameshima; Teruto Hashiguchi; Ikuro Maruyama

Lipopolysaccharide (LPS) stimulates macrophages by activating NF-kappaB, which contributes to the release of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6. 1,5-Anhydro-D-fructose (1,5-AF), a monosaccharide formed from starch and glycogen, exhibits anti-oxidant activity and enhances insulin secretion. This study examined the effects of 1,5-AF on LPS-induced inflammatory reactions and elucidated its molecular mechanisms. Before LPS challenge, mice were pretreated with 1,5-AF (38.5 mg/kg). We found that 1,5-AF pretreatment attenuated cytokine release into the serum, including TNF-alpha, IL-6 and macrophage chemoattractant protein (MCP)-1. Furthermore, pretreatment with 1,5-AF (500 microg/ml) attenuated cytokine release, and 1,5-AF directly inhibited the nuclear translocalization of the NF-kappaB p65 subunit in LPS-stimulated murine macrophage-like RAW264.7 cells. This inhibition was responsible for decreased LPS-induced phosphorylation on Ser536 of the NF-kappaB p65 subunit, which is a posttranslational modification involved in the non-canonical pathway. Collectively, these findings indicate that the anti-inflammatory activity of 1,5-AF occurs via inactivation of NF-kappaB.

Collaboration


Dive into the Yuko Nawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hitoshi Imaizumi

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar

Ko-ichi Kawahara

Osaka Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiki Masuda

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge