Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuko Togashi is active.

Publication


Featured researches published by Yuko Togashi.


European Journal of Pharmacology | 2002

Antipruritic activity of the κ-opioid receptor agonist, TRK-820

Yuko Togashi; Hideo Umeuchi; Kiyoshi Okano; Naoki Ando; Yoshitaka Yoshizawa; Toshiyuki Honda; Kuniaki Kawamura; Takashi Endoh; Jun Utsumi; Junzo Kamei; Toshiaki Tanaka; Hiroshi Nagase

The effects of the κ-opioid receptor agonist, TRK-820, (−)-17-(cyclopropylmethyl)-3, 14β-dihydroxy-4, 5α-epoxy-6β-[N-methyl-trans-3-(3-furyl) acrylamido] morphinan hydrochloride, on the itch sensation were compared with those of histamine H1 receptor antagonists, using the mouse pruritogen-induced scratching model. Peroral administration of TRK-820 reduced the numbers of substance P- or histamine-induced scratches dose dependently. No obvious suppression of the spontaneous locomotor activity was observed at the doses used for the experiments, indicating that the inhibition of scratches was not due to the effect on general behavior. Furthermore, the scratching inhibitory activity of TRK-820 was dose dependently antagonized by the specific κ-opioid receptor antagonist, nor-binaltorphimine, suggesting that the inhibitory activity was mediated via κ-opioid receptors. Histamine H1 receptor antagonists, chlorpheniramine and ketotifen, did not inhibit substance P-induced scratches, or did so only partially. Both antihistamines inhibited the histamine-induced scratches completely. These results suggest that TRK-820 has antipruritic activity which is mediated by κ-opioid receptors, and is effective in both antihistamine-sensitive and -resistant pruritus.


Experimental and Toxicologic Pathology | 2012

Urinary cystatin C as a biomarker for acute kidney injury and its immunohistochemical localization in kidney in the CDDP-treated rats

Yuko Togashi; Yuka Sakaguchi; Mari Miyamoto; Yohei Miyamoto

Cystatin C, a cysteine protease inhibitor, is a novel biomarker of renal damage. In the present study, we examined the urinary and plasma levels of cystatin C and how useful they are for the early detection of acute kidney injury (AKI) in CDDP-treated rats in comparison with other biomarkers (β2-microglobulin, calbindin, clusterin, EGF, GST-α, GST-μ, KIM-1, NGAL, osteopontin, TIMP-1, and VEGF). The urinary levels of cystatin C, GST-α, KIM-1, and EGF changed prior to proximal tubule damage and increases in plasma urea nitrogen and creatinine levels, suggesting their usefulness for predicting AKI. On the other hand, the plasma cystatin C level hardly changed. We also investigated the localization of cystatin C in the kidney according to the progression of renal damage. Cystatin C was predominantly localized in the proximal tubule of the cortex, and its immunohistochemical expression was not affected by CDDP treatment. In addition, cystatin C was observed in the lumen of the renal tubule in the cortex, cortico-medullary junction, and medulla during the progression of renal damage, although its immunoreactive area ratio was very low. In conclusion, urinary cystatin C measurements can detect CDDP-induced AKI as early as KIM-1, GST-α, and EGF in rats, although the change ratio of the cystatin C was smaller than others. Immunohistochemical cystatin C expression in the proximal tubule of the kidney was hardly changed by the CDDP treatment, but it was newly observed in the renal tubule lumen after CDDP treatment.


Experimental and Toxicologic Pathology | 2013

Urinary cystatin C as a biomarker for diabetic nephropathy and its immunohistochemical localization in kidney in Zucker diabetic fatty (ZDF) rats

Yuko Togashi; Yohei Miyamoto

Cystatin C, a cysteine protease inhibitor, is a novel biomarker of renal damage. In the present study, we examined the usefulness of urinary cystatin C for the detection of diabetic nephropathy in Zucker diabetic fatty (ZDF) rats compared to other biomarkers (β2-microglobulin, calbindin, clusterin, epidermal growth factor (EGF), alpha-glutathione S-transferase (GST-α), mu-glutathione S-transferase (GST-μ), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin, tissue inhibitor of metalloprotease-1 (TIMP-1), and vascular endothelial growth factor (VEGF). Urinary levels of cystatin C were increased in ZDF rats where renal damage was not histopathologically observed, and then further increased with the progression of renal damage, demonstrating the usefulness of early detection and accurate assessment of diabetic nephropathy. Urinary β2-microglobulin, clusterin, GST-μ, KIM-1, and osteopontin had the potency to detect renal damage in ZDF rats as well as cystatin C. We also investigated immunohistochemical localization of cystatin C in the kidney according to progressive renal damage. Cystatin C expression was mainly observed in the proximal renal tubule in ZDF rats, and hardly changed with progression of nephropathy. When renal damage was remarkable, cystatin C expression was also observed in the tubular lumen of the cortex and medulla, which was considered to be characteristic of renal damage in diabetic nephropathy. In conclusion, urinary cystatin C, β2-microglobulin, clusterin, GST-μ, KIM-1, and osteopontin could be useful biomarkers of diabetic nephropathy in ZDF rats. Immunohistochemical cystatin C expression in the proximal renal tubule was hardly changed by the progression of diabetic nephropathy, but it was newly observed in the tubular lumen when renal damage was remarkable in ZDF rats.


Brain Research | 2004

Effect of repeated administration of TRK-820, a κ-opioid receptor agonist, on tolerance to its antinociceptive and sedative actions

Tomohiko Suzuki; Naoki Izumimoto; Yuko Takezawa; Morihiro Fujimura; Yuko Togashi; Hiroshi Nagase; Toshiaki Tanaka; Takashi Endoh

Repeated administration of micro-opioid receptor agonist, morphine induces tolerance not only to the antinociceptive effect but also to other pharmacological effects, resulting in shortened working duration and decreased efficacy. But less is known about kappa-opioid agonist-induced tolerance. The tolerance-development potency of kappa-opioid receptor agonists with a focus on TRK-820 was characterized. After five administrations of kappa-opioid receptor agonists, TRK-820 (0.1-0.8 mg/kg), U-50,488H (10-80 mg/kg) and ICI-199,441 (0.025-0.2 mg/kg) subcutaneously over 3 days, tolerance to the antinociceptive effects, assessed by an acetic acid-induced abdominal constriction test, developed in a repeated dose-dependent manner. The tolerance-development potency of TRK-820 was the least among these kappa-opioid receptor agonists. Similarly, TRK-820 and U-50,488H induced tolerance to their sedative effects as judged by a wheel-running test in mice. Greater tolerance was developed to the sedative effect than to the antinociceptive effect in both compounds. After repeated administration, the number of kappa-opioid receptors in the mouse brain was reduced by U-50,488H (80 mg/kg) but not by TRK-820 (0.4 mg/kg). There was no change of the affinity by the treatment with both compounds. These results demonstrated that the kappa-opioid receptor agonists developed tolerance both to the antinociceptive and the sedative effects, though the tolerance to the sedative effect developed more readily than tolerance to the antinociceptive effect. The difference in the potency for down-regulating the kappa-opioid receptors in the brain may account for the tolerance-development potency of the compounds.


Experimental and Toxicologic Pathology | 2013

Immunohistochemistry of LAMP-2 and adipophilin for phospholipidosis in liver and kidney in ketoconazole-treated mice

Yoshiji Asaoka; Yuko Togashi; Naoko Imura; Takafumi Sai; Tomoya Miyoshi; Yohei Miyamoto

Drug-induced phospholipidosis is an abnormal accumulation of phospholipids in the lysosomes following repeated administration of cationic amphiphilic drugs. Phospholipidosis is detected histopathologically as cytoplasmic vacuolation; however, it is difficult to distinguish from lipid accumulation since their morphological features are similar. In this study, we investigated the usefulness of immunohistochemistry for lysosome-associated membrane protein-2 (LAMP-2) and adipophilin, a membrane protein of cytosolic non-lysosomal lipid droplets, in the liver and kidneys of mice orally administered ketoconazole, an inducer of hepatic phospholipidosis. In 7-week-old mice administered ketoconazole (300 mg/kg/day) for 7 days, cytoplasmic vacuolation was histopathologically observed in centrilobular hepatocytes and proximal tubular epithelial cells under the fasted condition. The cytoplasmic vacuolation consisted of foamy vacuoles, which were revealed to be phospholipidosis-characteristic lamellar bodies by electron microscopy. Furthermore, lipid-like vacuoles were observed in the perilobular hepatocytes, and revealed to be lipid droplets by electron microscopy. In immunohistochemistry, the foamy vacuoles and lipid-like vacuoles were positive for LAMP-2 and adipophilin, respectively. These results indicate that immunohistochemistry for LAMP-2 and adipophilin could distinguish between phospholipidosis and lipid accumulation. Additionally, it could detect ketoconazole-induced phospholipidosis in the glycogen-rich livers of non-fasted mice. In conclusion, ketoconazole induced phospholipidosis in not only the liver but also the kidneys, and immunohistochemistry for LAMP-2 and adipophilin could be useful for the pathological evaluation of drug-induced phospholipidosis in mice.


Experimental and Toxicologic Pathology | 2016

Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice.

Yoshiji Asaoka; Yuko Togashi; Mayu Mutsuga; Naoko Imura; Tomoya Miyoshi; Yohei Miyamoto

Chemical-induced hepatocellular hypertrophy is frequently observed in rodents, and is mostly caused by the induction of phase I and phase II drug metabolic enzymes and peroxisomal lipid metabolic enzymes. Liver weight is a sensitive and commonly used marker for detecting hepatocellular hypertrophy, but is also increased by a number of other factors. Histopathological observations subjectively detect changes such as hepatocellular hypertrophy based on the size of a hepatocyte. Therefore, quantitative microscopic observations are required to evaluate histopathological alterations objectively. In the present study, we developed a novel quantitative method for an image analysis of hepatocellular hypertrophy using liver sections stained with hematoxylin and eosin, and demonstrated its usefulness for evaluating hepatocellular hypertrophy induced by phenobarbital (a phase I and phase II enzyme inducer) and clofibrate (a peroxisomal enzyme inducer) in mice. The algorithm of this imaging analysis was designed to recognize an individual hepatocyte through a combination of pixel-based and object-based analyses. Hepatocellular nuclei and the surrounding non-hepatocellular cells were recognized by the pixel-based analysis, while the areas of the recognized hepatocellular nuclei were then expanded until they ran against their expanding neighboring hepatocytes and surrounding non-hepatocellular cells by the object-based analysis. The expanded area of each hepatocellular nucleus was regarded as the size of an individual hepatocyte. The results of this imaging analysis showed that changes in the sizes of hepatocytes corresponded with histopathological observations in phenobarbital and clofibrate-treated mice, and revealed a correlation between hepatocyte size and liver weight. In conclusion, our novel image analysis method is very useful for quantitative evaluations of chemical-induced hepatocellular hypertrophy.


Experimental and Toxicologic Pathology | 2013

Urinary cystatin C as a renal biomarker and its immunohistochemical localization in anti-GBM glomerulonephritis rats.

Yuko Togashi; Naoko Imura; Yohei Miyamoto

The usefulness of urinary cystatin C for the early detection of renal damage in anti-glomerular basement membrane (GBM) glomerulonephritis rats was investigated and compared to other biomarkers (β2-microglobulin, calbindin, clusterin, epidermal growth factor (EGF), alpha-glutathione S-transferase (GST-α), mu-glutathione S-transferase (GST-μ), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin, tissue inhibitor of metalloprotease-1 (TIMP-1), and vascular endothelial growth factor (VEGF)). Urinary levels of cystatin C increased in anti-GBM glomerulonephritis rats, whereas the conventional markers, plasma creatinine and UN did not, demonstrating its usefulness for the early detection of renal damage associated with anti-GBM glomerulonephritis. As well as cystatin C, urinary β2-microglobulin, clusterin, GST-α, GST-μ, KIM-1, and NGAL also had the potential to detect renal damage associated with anti-GBM glomerulonephritis. Furthermore, the immunohistochemical localization of cystatin C in the kidney was examined. Cystatin C expression was mainly observed in the proximal renal tubules in anti-GBM glomerulonephritis rats, and its expression barely changed with the progression of glomerulonephritis. Cystatin C expression was also observed in the tubular lumen of the cortex and medulla when glomerulonephritis was marked, which was considered to be characteristic of renal damage. In conclusion, urinary cystatin C, β2-microglobulin, clusterin, GST-α, GST-μ, KIM-1, and NGAL could be useful biomarkers of renal damage in anti-GBM glomerulonephritis rats. Immunohistochemical cystatin C expression in the proximal renal tubules was barely changed by the progression of glomerulonephritis, but it was newly observed in the tubular lumen when renal damage was apparent.


European Journal of Pharmacology | 2012

In vitro and in vivo pharmacological characterization of the main metabolites of nalfurafine hydrochloride

Kaoru Nakao; Yuko Togashi; Toshiyuki Honda; Shinobu Momen; Hideo Umeuchi; Shinji Sakakibara; Toshiaki Tanaka; Kiyoshi Okano; Hidenori Mochizuki

Pharmacological characterization of the main metabolites of nalfurafine hydrochloride ((E)-N-[17-(cyclopropylmethyl)-4,5α-epoxy-3,14-dihydroxymorphinan-6β-yl]-3-(furan-3-yl)-N-methylprop-2-enamide monohydrochloride; a selective κ-opioid receptor agonist and an antipruritic for uremic pruritus in hemodialysis patients in Japan) such as 17-decyclopropylmethylated nalfurafine (de-CPM), 3-glucuronide of nalfurafine (NFA-G) and 3-glucuronide of 17-decyclopropylmethylated nalfurafine (de-CPM-G) was performed in vitro (human opioid receptor radioligand binding assay and forskolin-stimulated cyclic adenosine monophosphate (cAMP) assay) and in vivo (substance P-induced scratching behavior in mice). These main metabolites of nalfurafine showed the low affinities for human κ-, μ- and δ-opioid receptors except for the affinity of de-CPM to κ-opioid receptor (inhibition constant (Ki) values: 5.95nmol/l), which was 24 times lower than that of nalfurafine. Moreover, the main metabolites of nalfurafine had much lower agonistic activities than that of nalfurafine for three opioid receptors in forskolin-stimulated cAMP assays. In the substance P-induced mouse scratching behavior, the subcutaneous administration of each metabolite did not statistically significantly reduce the scratching behavior at doses up to 1000μg/kg which was 100 times higher than the effective dose of nalfurafine. These findings suggest that the main metabolites of nalfurafine do not make any contribution to its pharmacological actions including antipruritic effects in vivo.


Experimental and Toxicologic Pathology | 2017

Aminoglutethimide-induced lysosomal changes in adrenal gland in mice

Mayu Mutsuga; Yoshiji Asaoka; Naoko Imura; Tomoya Miyoshi; Yuko Togashi

Aminoglutethimide is a steroidogenesis inhibitor and inhibits a cholesterol side-chain cleavage enzyme (CYP11A1) that converts cholesterol to pregnenolone in mitochondria. We investigated histopathological changes induced by 5-day administration of AG in mice. Cytoplasmic vacuoles of various sizes and single cell necrosis were found in zona fasciculata cells in AG-treated mice. Some vacuoles were positive for adipophilin, whereas others were positive for lysosome-associated membrane protein-2 on immunohistochemical staining, indicating they were enlarged lipid droplets and lysosomes, respectively. Electron microscopy revealed enlarged lysosomes containing damaged mitochondria and lamellar bodies in zona fasciculata cells, and they were considered to reflect the intracellular protein degradation processes, mitophagy and lipophagy. From these results, we showed that AG induces excessive lipid accumulation and mitochondrial damage in zona fasciculata cells, which leads to an accelerated lysosomal degradation in mice.


Journal of Toxicologic Pathology | 2013

Spontaneous Accumulation of Globotriaosylceramide (Gb3) in Proximal Renal Tubules in an ICR Mouse.

Mayu Mutsuga; Yoshiji Asaoka; Yuko Togashi; Naoko Imura; Tomoya Miyoshi; Yohei Miyamoto

This report describes spontaneous cytoplasmic vacuolation in the proximal renal tubules of a 7-week-old male ICR [Crlj:CD1(ICR)] mouse. The contents of vacuoles were positively stained with periodic acid-Schiff (PAS) and Sudan black, and the membranes were positive on immunohistochemical staining for lysosomal-associated membrane protein-2 (LAMP-2), a marker of lysosomal membrane. Electron microscopy revealed electron-dense lamellar bodies in the proximal tubular epithelial cells. These histopathological features are similar to those in α-galactosidase A-deficient mice, in which globotriaosylceramide (Gb3), a glycosphingolipid, accumulates in lysosomes. When we performed immunohistochemical staining for Gb3, the contents of vacuoles were positively stained. From these results, spontaneous cytoplasmic vacuolation in the proximal renal tubules in the mouse was identified as lysosomal accumulation of Gb3.

Collaboration


Dive into the Yuko Togashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge