Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yukoh Hiei is active.

Publication


Featured researches published by Yukoh Hiei.


Plant Molecular Biology | 1997

Transformation of rice mediated by Agrobacterium tumefaciens

Yukoh Hiei; Toshihiko Komari; Tomoaki Kubo

Agrobacterium tumefaciens has been routinely utilized in gene transfer to dicotyledonous plants, but monocotyledonous plants including important cereals were thought to be recalcitrant to this technology as they were outside the host range of crown gall. Various challenges to infect monocotyledons including rice with Agrobacterium had been made in many laboratories, but the results were not conclusive until recently. Efficient transformation protocols mediated by Agrobacterium were reported for rice in 1994 and 1996. A key point in the protocols was the fact that tissues consisting of actively dividing, embryonic cells, such as immature embryos and calli induced from scutella, were co-cultivated with Agrobacterium in the presence of acetosyringonc, which is a potent inducer of the virulence genes. It is now clear that Agrobacterium is capable of transferring DNA to monocotyledons if tissues containing ‘competent’ cells are infected. The studies of transformation of rice suggested that numerous factors including genotype of plants, types and ages of tissues inoculated, kind of vectors, strains of Agrobacterium, selection marker genes and selective agents, and various conditions of tissue culture, are of critical importance. Advantages of the Agrobacterium-mediated transformation in rice, like on dicotyledons, include the transfer of pieces of DNA with defined ends with minimal rearrangements, the transfer of relatively large segments of DNA, the integration of small numbers of copies of genes into plant chromosomes, and high quality and fertility of transgenic plants. Delivery of foreign DNA to rice plants via A. tumefaciens is a routine technique in a growing number of laboratories. This technique will allow the genetic improvement of diverse varieties of rice, as well as studies of many aspects of the molecular biology of rice.


Nature Protocols | 2008

Agrobacterium -mediated transformation of rice using immature embryos or calli induced from mature seed

Yukoh Hiei; Toshihiko Komari

Here, we provide comprehensive, highly efficient protocols for Agrobacterium tumefaciens-mediated transformation of a wide range of rice genotypes. Methods that use either immature embryos (japonica and indica rice) or calli (japonica cultivars and the indica cultivar, Kasalath) as a starting material for inoculation with Agrobacterium are described. Immature embryos are pretreated with heat and centrifugal force, which significantly enhances the efficiency of gene transfer, and then infected with Agrobacterium. Callus is induced from mature seeds and infected. Transformed cells proliferated from these tissues are selected on the basis of hygromycin resistance, and transgenic plants are eventually regenerated. A single immature japonica or Kasalath embryo will produce between 10 and 18 independent transgenic plants; for other non-Kasalath indica varieties, the number of transgenic plants expected will be between 5 and 13. For japonica and Kasalath, transformants should be obtained from between 50 and 90% of calli. From inoculation with Agrobacterium to transplanting to soil will take 55 d for japonica and Kasalath, and 74 d for indica other than Kasalath using the immature embryo method, and 50 d for japonica and Kasalath using the callus method.


Nature Protocols | 2007

Agrobacterium-mediated transformation of maize

Yuji Ishida; Yukoh Hiei; Toshihiko Komari

Maize may be transformed very efficiently using Agrobacterium tumefaciens-mediated methods. The most critical factor in the transformation protocol is the co-cultivation of healthy immature embryos of the correct developmental stage with A. tumefaciens; the embryos should be collected only from vigorous plants grown in well-conditioned glasshouses. With the protocol described here, approximately 50% of immature embryos from the inbred line A188 and 15% from inbred lines A634, H99 and W117 will produce transformants. About half of the transformed plants are expected to carry one or two copies of the transgenes, which are inherited by the progeny in a mendelian fashion. More than 90% of transformants are expected to be normal in morphology. The protocol takes about 3 months from the start of co-cultivation to the planting of transformants into pots.


Plant Cell Tissue and Organ Culture | 2006

Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens

Yukoh Hiei; Toshihiko Komari

A highly efficient gene transfer method mediated by Agrobacterium tumefaciens was developed for Group I indica rice, which had been quite recalcitrant in tissue culture and transformation. Freshly isolated immature embryos from plants grown in a greenhouse were inoculated with A. tumefaciens LBA4404 that harbored super-binary vector pTOK233 or pSB134, which had a hygromycin-resistance gene and a GUS gene in the T-DNA. The efficiency of gene transfer varied with the kinds of gelling agents and the basic compositions of co-cultivation media. The highest activity of GUS after co-cultivation was observed when NB medium solidified with agarose was used. For the subsequent cultures, two types of media (modified NB and CC) were chosen to recover hygromycin-resistant cells efficiently. The transformation protocol thus developed worked very well in all of the varieties tested in this study, and the transformation frequency (number of independent hygromycin-resistant and GUS-positive plants per embryo) reached more than 30% in IR8, IR24, IR26, IR36, IR54, IR64, IR72, Xin Qing Ai 1, Nan Jin 11, and Suewon 258. Most of the transformants (T0) were normal in morphology and fertile. Stable integration, expression and inheritance of transgenes were demonstrated by molecular and genetic analysis of transformants in the T0 and T1 generations. For the recovery of multiple independent transgenic events from a single immature embryo, procedures were developed to section the embryo into as many as 30 pieces after non-selective cultures following co-cultivation. Transformants were then obtained from the pieces cultured on the selective media, and, in the highest case, more than seven independent transgenic plants per original embryo (transformation frequency of 738%) were produced. Thus, the efficiency of transformation was remarkably improved.


Current Opinion in Plant Biology | 1998

Advances in cereal gene transfer

Toshihiko Komari; Yukoh Hiei; Yuji Ishida; Takashi Kumashiro; Tomoaki Kubo

Over the past five years, transgenic strains of various major cereals have been produced, with transformation of rice and maize being most common. A majority of the cereal transformants obtained to date has been generated by the particle bombardment technique, but Agrobacterium-mediated transformation is rapidly becoming the method of choice. Rice, the plant in which transformation-related technology is most advanced, appears to be the model monocotyledon for basic and applied studies.


Plant Cell Tissue and Organ Culture | 2006

Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens

Yukoh Hiei; Yuji Ishida; Keisuke Kasaoka; Toshihiko Komari

The efficiency of transformation was improved by treating immature embryos with heat and centrifugation before infection with Agrobacterium tumefaciens in rice and maize. Because the effects were detected both in the levels of transgene expression after co-cultivation and in the number of independent transgenic plants obtained per embryo, conditions were first optimized based on the transgene expression, and then transformants were produced. The optimal conditions varied considerably depending on species and genotypes, but reasonably good parameters were identified for Japonica rice, Indica rice or maize. As a general tendency, the effect of centrifugation was greater than that of heat in Japonica rice, whereas that of heat was greater than that of centrifugation in Indica rice and maize A188, and the combination of the treatments was the most effective in all of the genotypes tested. The frequency of transformation was improved several fold in rice and maize. In addition, transformation of certain genotypes of maize, which were not transformable before, and transformation of maize with a less efficient vector, which could not transform maize before, became possible by these pre-treatments. In the highest case, 18 independent transgenic plants were obtained from a single immature embryo of Japonica rice. Although nothing is known about the mechanism, these pre-treatments seemed to render cells of rice and maize more competent for transformation mediated by A. tumefaciens.


Frontiers in Plant Science | 2014

Progress of cereal transformation technology mediated by Agrobacterium tumefaciens

Yukoh Hiei; Yuji Ishida; Toshihiko Komari

Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens.


Methods of Molecular Biology | 2006

Binary Vectors and Super-binary Vectors

Toshihiko Komari; Yoshimitsu Takakura; Jun Ueki; Norio Kato; Yuji Ishida; Yukoh Hiei

A binary vector is a standard tool in the transformation of higher plants mediated by Agrobacterium tumefaciens. It is composed of the borders of T-DNA, multiple cloning sites, replication functions for Escherichia coli and A. tumefaciens, selectable marker genes, reporter genes, and other accessory elements that can improve the efficiency of and/or give further capability to the system. A super-binary vector carries additional virulence genes from a Ti plasmid, and exhibits very high frequency of transformation, which is valuable for recalcitrant plants such as cereals. A number of useful vectors are widely circulated. Whereas vectors with compatible selectable markers and convenient cloning sites are usually the top criteria when inserting gene fragments shorter than 15 kb, the capability of maintaining a large DNA piece is more important for consideration when introducing DNA fragments larger than 15 kb. Because no vector is perfect for every project, it is recommended that modification or construction of vectors should be made according to the objective of the experiments. Existing vectors serve as good sources of components.


Methods of Molecular Biology | 2015

Wheat (Triticum aestivum L.) transformation using immature embryos.

Yuji Ishida; Masako Tsunashima; Yukoh Hiei; Toshihiko Komari

Wheat may now be transformed very efficiently by Agrobacterium tumefaciens. Under the protocol hereby described, immature embryos of healthy plants of wheat cultivar Fielder grown in a well-conditioned greenhouse were pretreated with centrifuging and cocultivated with A. tumefaciens. Transgenic wheat plants were obtained routinely from between 40 and 90 % of the immature embryos, thus infected in our tests. All regenerants were normal in morphology and fully fertile. About half of the transformed plants carried single copy of the transgene, which are inherited by the progeny in a Mendelian fashion.


Archive | 2015

High Efficiency Wheat Transformation Mediated by Agrobacterium tumefaciens

Yuji Ishida; Yukoh Hiei; Toshihiko Komari

Wheat is one of the most important cereals for humans but quite recalcitrant in transformation. We have thoroughly examined every aspect of the wheat transformation protocols mediated by Agrobacterium tumefaciens and we were able to identify and optimize the key factors. Immature embryos isolated from healthy plants grown in a greenhouse were pre-treated with centrifuging and co-cultivated with A. tumefaciens. The frequency of transformation (independent transgenics/explant) was between 50 % and 60 % were routinely observed and higher than 90 % were recorded in the best cases. Not surprisingly, the key factors did not differ much from those in other cereal plants such as rice and maize. Both bar and hpt genes were good as selection markers. Fielder, a spring wheat cultivar, constantly showed high efficiency of transformation by our protocol. We have been able to obtain transgenic plants from the embryos harvested from the greenhouses throughout the year. Most of the transformed plants were normal in morphology and fully fertile. More than 40 % of the transformants had a single copy of the transgenes, which were inherited in a Mendelian fashion in most of the lines analyzed. Transgenic wheat has been generated at high frequency by several research groups by our protocol by now. Therefore, wheat has finally joined the list of cereals that can be efficiently transformed.

Collaboration


Dive into the Yukoh Hiei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge