Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yulia A. Kuzovkina is active.

Publication


Featured researches published by Yulia A. Kuzovkina.


Gcb Bioenergy | 2017

Genotype × environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids

Eric S. Fabio; Timothy A. Volk; Raymond O. Miller; Michelle J. Serapiglia; Ken C. J. Van Rees; Ryan D. Hangs; Beyhan Y. Amichev; Yulia A. Kuzovkina; Michel Labrecque; Gregg A. Johnson; Robert G. Ewy; Gary J. Kling; Lawrence B. Smart

Development of dedicated bioenergy crop production systems will require accurate yield estimates, which will be important for determining many of the associated environmental and economic impacts of their production. Shrub willow (Salix spp) is being promoted in areas of the USA and Canada due to its adaption to cool climates and wide genetic diversity available for breeding improvement. Willow breeding in North America is in an early stage, and selection of elite genotypes for commercialization will require testing across broad geographic regions to gain an understanding of how shrub willow interacts with the environment. We analyzed a dataset of first‐rotation shrub willow yields of 16 genotypes across 10 trial environments in the USA and Canada for genotype‐by‐environment interactions using the additive main effects and multiplicative interactions (AMMI) model. Mean genotype yields ranged from 5.22 to 8.58 oven‐dry Mg ha−1 yr−1. Analysis of the main effect of genotype showed that one round of breeding improved yields by as much as 20% over check cultivars and that triploid hybrids, most notably Salix viminalis × S. miyabeana, exhibited superior yields. We also found important variability in genotypic response to environments, which suggests specific adaptability could be exploited among 16 genotypes for yield gains. Strong positive correlations were found between environment main effects and AMMI parameters and growing environment temperatures. These findings demonstrate yield improvements are possible in one generation and will be important for developing cultivar recommendations and for future breeding efforts.


International Journal of Phytoremediation | 2011

Lead Uptake and Translocation by Willows in Pot and Field Experiments

Olena P. Zhivotovsky; Yulia A. Kuzovkina; Cristian P. Schulthess; Thomas F. Morris; Dawn Pettinelli

Plant growth and lead (Pb) uptake by seven willow varieties were investigated in pot and field experiments to assess the suitability of willows for phytoremediation of Pb at heavily contaminated sites such as skeet ranges. Differences in uptake and translocation of Pb in Salix were observed between pot and field experiments. In the pot experiment, willows grown in Pb-contaminated field soil for 6 months showed tolerance to very high soil Pb concentration (21360 mg kg−1), and with the addition of EDTA were able to take up and translocate more than 1000 mg kg−1 Pb into above-ground tissues. In the field experiment, all willow varieties showed tolerance to heterogeneously high soil Pb concentrations. Plants were also able to take up and translocate Pb into above-ground tissues. However, after 4.5 months, the lead concentration in the above-ground tissues of willows grown in soil amended with EDTA was less than 200 mg kg−1. The results from the pot experiment suggest that Salix varieties have the potential to take up and translocate significant amounts of Pb into above-ground tissues using EDTA. However, to verify the phytoextraction abilities of Salix in the field, additional research is needed.


Gcb Bioenergy | 2018

Poplar and shrub willow energy crops in the United States: field trial results from the multiyear regional feedstock partnership and yield potential maps based on the PRISM-ELM model

Timothy A. Volk; Bill Berguson; Christopher Daly; Michael D. Halbleib; Raymond O. Miller; Timothy G. Rials; Lawrence P. Abrahamson; Dan Buchman; Marylin Buford; Michael W. Cunningham; Mark H. Eisenbies; Eric S. Fabio; Karl Hallen; Justin P Heavey; Gregg A. Johnson; Yulia A. Kuzovkina; Bo Liu; Bernie Mcmahon; Randy Rousseau; Shun Shi; Richard Shuren; Lawrence B. Smart; Glen R. Stanosz; Brain Stanton; Bryce Stokes; Jeff Wright

To increase the understanding of poplar and willow perennial woody crops and facilitate their deployment for the production of biofuels, bioproducts, and bioenergy, there is a need for broadscale yield maps. For national analysis of woody and herbaceous crops production potential, biomass feedstock yield maps should be developed using a common framework. This study developed willow and poplar potential yield maps by combining data from a network of willow and poplar field trials and the modeling power of PRISM‐ELM. Yields of the top three willow cultivars across 17 sites ranged from 3.60 to 14.6 Mg ha−1 yr−1 dry weight, while the yields from 17 poplar trials ranged from 7.5 to 15.2 Mg ha−1 yr−1. Relationships between the environmental suitability estimates from the PRISM‐ELM model and results from field trials had an R2 of 0.60 for poplar and 0.81 for willow. The resulting potential yield maps reflected the range of poplar and willow yields that have been reported in the literature. Poplar covered a larger geographic range than willow, which likely reflects the poplar breeding efforts that have occurred for many more decades using genotypes from a broader range of environments than willow. While the field trial data sets used to develop these models represent the most complete information at the time, there is a need to expand and improve the model by monitoring trials over multiple cutting cycles and across a broader range of environmental gradients. Despite some limitations, the results of these models represent a dramatic improvement in projections of potential yield of poplar and willow crops across the United States.


International Journal of Phytoremediation | 2017

Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions

Patrick McIntosh; Cristian P. Schulthess; Yulia A. Kuzovkina; Karl Guillard

ABSTRACT Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.


International Journal of Phytoremediation | 2016

Breakdown of low-level total petroleum hydrocarbons (TPH) in contaminated soil using grasses and willows

Patrick McIntosh; Yulia A. Kuzovkina; Cristian P. Schulthess; Karl Guillard

ABSTRACT A phytoremediation study targeting low-level total petroleum hydrocarbons (TPH) was conducted using cool- and warm-season grasses and willows (Salix species) grown in pots filled with contaminated sandy soil from the New Haven Rail Yard, CT. Efficiencies of the TPH degradation were assessed in a 90-day experiment using 20–8.7–16.6 N-P-K water-soluble fertilizer and fertilizer with molasses amendments to enhance phytoremediation. Plant biomass, TPH concentrations, and indigenous microbes quantified with colony-forming units (CFU), were assessed at the end of the study. Switchgrass grown with soil amendments produced the highest aboveground biomass. Bacterial CFUs were in orders of magnitude significantly higher in willows with soil amendments compared to vegetated treatments with no amendments. The greatest reduction in TPH occurred in all vegetated treatments with fertilizer (66–75%) and fertilizer/molasses (65–74%), followed sequentially by vegetated treatments without amendments, unvegetated treatments with amendments, and unvegetated treatments with no amendment. Phytoremediation of low-level TPH contamination was most efficient where fertilization was in combination with plant species. The same level of remediation was achievable through the addition of grasses and/or willow combinations without amendment, or by fertilization of sandy soil.


Ecological Engineering | 2009

The characterization of willow (Salix L.) varieties for use in ecological engineering applications: Co-ordination of structure, function and autecology

Yulia A. Kuzovkina; Timothy A. Volk


Archive | 2008

Salix: Botany and Global Horticulture

Yulia A. Kuzovkina; Martin Weih; Marta Abalos Romero; John G. Charles; Sarah Hust; Ian McIvor; Angelas Karp; Sviatlana Trybush; Michel Labrecque; Traian Ion Teodorescu; Naresh B. Singh; Lawrence B. Smart; Timothy A. Volk


Urban Forestry & Urban Greening | 2015

Who lives in greener neighborhoods? The distribution of street greenery and its association with residents' socioeconomic conditions in Hartford, Connecticut, USA

Xiaojiang Li; Chuanrong Zhang; Weidong Li; Yulia A. Kuzovkina; Daniel Weiner


Annals of Applied Biology | 2010

Phenological stages of willow (Salix)

Margaret M. Saska; Yulia A. Kuzovkina


Urban Forestry & Urban Greening | 2016

Environmental inequities in terms of different types of urban greenery in Hartford, Connecticut

Xiaojiang Li; Chuanrong Zhang; Weidong Li; Yulia A. Kuzovkina

Collaboration


Dive into the Yulia A. Kuzovkina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy A. Volk

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuanrong Zhang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Dawn Pettinelli

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge