Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yulia Newton is active.

Publication


Featured researches published by Yulia Newton.


Cell | 2016

Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma

Michele Ceccarelli; Floris P. Barthel; Tathiane Maistro Malta; Thais S. Sabedot; Sofie R. Salama; Bradley A. Murray; Olena Morozova; Yulia Newton; Amie Radenbaugh; Stefano Maria Pagnotta; Samreen Anjum; Jiguang Wang; Ganiraju C. Manyam; Pietro Zoppoli; Shiyun Ling; Arjun A. Rao; Mia Grifford; Andrew D. Cherniack; Hailei Zhang; Laila M. Poisson; Carlos Gilberto Carlotti; Daniela Tirapelli; Arvind Rao; Tom Mikkelsen; Ching C. Lau; W. K. Alfred Yung; Raul Rabadan; Jason T. Huse; Daniel J. Brat; Norman L. Lehman

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Genome Research | 2014

Centromere reference models for human chromosomes X and Y satellite arrays

Karen H. Miga; Yulia Newton; Miten Jain; Nicolas Altemose; Huntington F. Willard; W. James Kent

The human genome sequence remains incomplete, with multimegabase-sized gaps representing the endogenous centromeres and other heterochromatic regions. Available sequence-based studies within these sites in the genome have demonstrated a role in centromere function and chromosome pairing, necessary to ensure proper chromosome segregation during cell division. A common genomic feature of these regions is the enrichment of long arrays of near-identical tandem repeats, known as satellite DNAs, which offer a limited number of variant sites to differentiate individual repeat copies across millions of bases. This substantial sequence homogeneity challenges available assembly strategies and, as a result, centromeric regions are omitted from ongoing genomic studies. To address this problem, we utilize monomer sequence and ordering information obtained from whole-genome shotgun reads to model two haploid human satellite arrays on chromosomes X and Y, resulting in an initial characterization of 3.83 Mb of centromeric DNA within an individual genome. To further expand the utility of each centromeric reference sequence model, we evaluate sites within the arrays for short-read mappability and chromosome specificity. Because satellite DNAs evolve in a concerted manner, we use these centromeric assemblies to assess the extent of sequence variation among 366 individuals from distinct human populations. We thus identify two satellite array variants in both X and Y centromeres, as determined by array length and sequence composition. This study provides an initial sequence characterization of a regional centromere and establishes a foundation to extend genomic characterization to these sites as well as to other repeat-rich regions within complex genomes.


Proceedings of the National Academy of Sciences of the United States of America | 2015

A basal stem cell signature identifies aggressive prostate cancer phenotypes

Bryan A. Smith; Artem Sokolov; Vladislav Uzunangelov; Robert Baertsch; Yulia Newton; Kiley Graim; Colleen Mathis; Donghui Cheng; Joshua M. Stuart; Owen N. Witte

Significance Aggressive cancers often possess functional and molecular traits characteristic of normal stem cells. It is unclear if aggressive phenotypes of prostate cancer molecularly resemble normal stem cells residing within the human prostate. Here, we transcriptionally profiled epithelial populations from the human prostate and show that aggressive prostate cancer is enriched for a prostate basal stem cell signature. Within prostate cancer metastases, histological subtypes had varying enrichment of the stem cell signature, with small cell neuroendocrine carcinoma being the most stem cell-like. We further found that small cell neuroendocrine carcinoma and the prostate basal stem cell share a common transcriptional program. Targeting normal stem cell transcriptional programs may provide a new strategy for treating advanced prostate cancer. Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells.


Cell Reports | 2017

Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

Farshad Farshidfar; Siyuan Zheng; Marie-Claude Gingras; Yulia Newton; Juliann Shih; A. Gordon Robertson; Toshinori Hinoue; Katherine A. Hoadley; Ewan A. Gibb; Jason Roszik; Kyle Covington; Chia Chin Wu; Eve Shinbrot; Nicolas Stransky; Apurva M. Hegde; Ju Dong Yang; Ed Reznik; Sara Sadeghi; Chandra Sekhar Pedamallu; Akinyemi I. Ojesina; Julian Hess; J. Todd Auman; Suhn Kyong Rhie; Reanne Bowlby; Mitesh J. Borad; Andrew X. Zhu; Josh Stuart; Chris Sander; Rehan Akbani; Andrew D. Cherniack

Summary Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.


Cell | 2016

Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer

Justin M. Drake; Evan O. Paull; Nicholas A. J. Graham; John K. Lee; Bryan A. Smith; Bjoern Titz; Tanya Stoyanova; Claire M. Faltermeier; Vladislav Uzunangelov; Daniel E. Carlin; Daniel Teo Fleming; Christopher K. Wong; Yulia Newton; Sud Sudha; Ajay A. Vashisht; Jiaoti Huang; James A. Wohlschlegel; Thomas G. Graeber; Owen N. Witte; Joshua M. Stuart

We used clinical tissue from lethal metastatic castration-resistant prostate cancer (CRPC) patients obtained at rapid autopsy to evaluate diverse genomic, transcriptomic, and phosphoproteomic datasets for pathway analysis. Using Tied Diffusion through Interacting Events (TieDIE), we integrated differentially expressed master transcriptional regulators, functionally mutated genes, and differentially activated kinases in CRPC tissues to synthesize a robust signaling network consisting of druggable kinase pathways. Using MSigDB hallmark gene sets, six major signaling pathways with phosphorylation of several key residues were significantly enriched in CRPC tumors after incorporation of phosphoproteomic data. Individual autopsy profiles developed using these hallmarks revealed clinically relevant pathway information potentially suitable for patient stratification and targeted therapies in late stage prostate cancer. Here, we describe phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) that shed light on the diversity of activated signaling pathways in metastatic CRPC while providing an integrative, pathway-based reference for drug prioritization in individual patients.


Journal of Clinical Oncology | 2018

Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study

Rahul Aggarwal; Jiaoti Huang; Joshi J. Alumkal; Li Zhang; Felix Y. Feng; George Thomas; Alana S. Weinstein; Verena Friedl; Can Zhang; Owen N. Witte; Paul Lloyd; Martin Gleave; Christopher P. Evans; Jack F. Youngren; Tomasz M. Beer; Matthew Rettig; Chris K.C. Wong; Lawrence D. True; Adam Foye; Denise Playdle; Charles J. Ryan; Primo N. Lara; Kim N. Chi; Vlado Uzunangelov; Artem Sokolov; Yulia Newton; Himisha Beltran; Francesca Demichelis; Mark A. Rubin; Joshua M. Stuart

Purpose The prevalence and features of treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC) are not well characterized in the era of modern androgen receptor (AR)-targeting therapy. We sought to characterize the clinical and genomic features of t-SCNC in a multi-institutional prospective study. Methods Patients with progressive, metastatic castration-resistant prostate cancer (mCRPC) underwent metastatic tumor biopsy and were followed for survival. Metastatic biopsy specimens underwent independent, blinded pathology review along with RNA/DNA sequencing. Results A total of 202 consecutive patients were enrolled. One hundred forty-eight (73%) had prior disease progression on abiraterone and/or enzalutamide. The biopsy evaluable rate was 79%. The overall incidence of t-SCNC detection was 17%. AR amplification and protein expression were present in 67% and 75%, respectively, of t-SCNC biopsy specimens. t-SCNC was detected at similar proportions in bone, node, and visceral organ biopsy specimens. Genomic alterations in the DNA repair pathway were nearly mutually exclusive with t-SCNC differentiation ( P = .035). Detection of t-SCNC was associated with shortened overall survival among patients with prior AR-targeting therapy for mCRPC (hazard ratio, 2.02; 95% CI, 1.07 to 3.82). Unsupervised hierarchical clustering of the transcriptome identified a small-cell-like cluster that further enriched for adverse survival outcomes (hazard ratio, 3.00; 95% CI, 1.25 to 7.19). A t-SCNC transcriptional signature was developed and validated in multiple external data sets with > 90% accuracy. Multiple transcriptional regulators of t-SCNC were identified, including the pancreatic neuroendocrine marker PDX1. Conclusion t-SCNC is present in nearly one fifth of patients with mCRPC and is associated with shortened survival. The near-mutual exclusivity with DNA repair alterations suggests t-SCNC may be a distinct subset of mCRPC. Transcriptional profiling facilitates the identification of t-SCNC and novel therapeutic targets.


BMC Medical Genomics | 2017

Revealing cancer subtypes with higher-order correlations applied to imaging and omics data

Kiley Graim; Tiffany Ting Liu; Achal S. Achrol; Evan O. Paull; Yulia Newton; Steven D. Chang; Griffith R. Harsh; Sergio P. Cordero; Daniel L. Rubin; Joshua M. Stuart

BackgroundPatient stratification to identify subtypes with different disease manifestations, severity, and expected survival time is a critical task in cancer diagnosis and treatment. While stratification approaches using various biomarkers (including high-throughput gene expression measurements) for patient-to-patient comparisons have been successful in elucidating previously unseen subtypes, there remains an untapped potential of incorporating various genotypic and phenotypic data to discover novel or improved groupings.MethodsHere, we present HOCUS, a unified analytical framework for patient stratification that uses a community detection technique to extract subtypes out of sparse patient measurements. HOCUS constructs a patient-to-patient network from similarities in the data and iteratively groups and reconstructs the network into higher order clusters. We investigate the merits of using higher-order correlations to cluster samples of cancer patients in terms of their associations with survival outcomes.ResultsIn an initial test of the method, the approach identifies cancer subtypes in mutation data of glioblastoma, ovarian, breast, prostate, and bladder cancers. In several cases, HOCUS provides an improvement over using the molecular features directly to compare samples. Application of HOCUS to glioblastoma images reveals a size and location classification of tumors that improves over human expert-based stratification.ConclusionsSubtypes based on higher order features can reveal comparable or distinct groupings. The distinct solutions can provide biologically- and treatment-relevant solutions that are just as significant as solutions based on the original data.


JCO Precision Oncology | 2018

Comparative RNA-Sequencing Analysis Benefits a Pediatric Patient With Relapsed Cancer

Yulia Newton; S. Rod Rassekh; Rebecca J. Deyell; Yaoqing Shen; Martin R. Jones; Chris Dunham; Stephen Yip; Sreeja Leelakumari; Jingchun Zhu; Duncan McColl; Teresa Swatloski; Sofie R. Salama; Tony Ng; Glenda Hendson; Anna F. Lee; Yussanne Ma; Richard A. Moore; Andrew J. Mungall; David Haussler; Joshua M. Stuart; Colleen Jantzen; Janessa Laskin; Steven Jones; Marco Marra; Olena Morozova

Clinical detection of sequence and structural variants in known cancer genes points to viable treatment options for a minority of children with cancer.1 To increase the number of children who benefit from genomic profiling, gene expression information must be considered alongside mutations.2,3 Although high expression has been used to nominate drug targets for pediatric cancers,4,5 its utility has not been evaluated in a systematic way.6 We describe a child with a rare sarcoma that was profiled with whole-genome and RNA sequencing (RNA-Seq) techniques. Although the tumor did not harbor DNA mutations targetable by available therapies, incorporation of gene expression information derived from RNA-Seq analysis led to a therapy that produced a significant clinical response. We use this case to describe a framework for inclusion of gene expression into the clinical genomic evaluation of pediatric tumors.


Cancer Research | 2017

Abstract 2466: Identifying confidently measured genes in single pediatric cancer patient samples using RNA sequencing

Holly Beale; Du Linh Lam; John Vivian; Yulia Newton; Avanthi Tayi Shah; Isabel Bjork; Theodore C. Goldstein; Angela N. Brooks; Josh Stuart; Sofie R. Salama; E. Alejandro Sweet-Cordero; David Haussler; Olena Morozova

In the UC Santa Cruz Treehouse Childhood Cancer Initiative (treehousegenomics.soe.ucsc.edu), we are exploring the utility of using RNA-Seq analysis of tumor samples from children to identify potential novel therapeutic options for each individual. Within a single RNA-Seq data set, the gene expression measurements are not equally accurate. The identification of activated, druggable pathways requires accurate gene-level expression measurements. We receive samples from a variety of clinical and research settings, and the quantity and complexity of the available input material and the depth of sequencing differ. These factors inspired us to develop a tool that will allow us to identify accurate measurements in most RNA-Seq samples we receive. First, we characterized the relationship between depth of sequencing and the accuracy of the gene expression measurement. We analyzed subsets of reads in samples with more than 50 million Uniquely Mapped, Exonic, Non-duplicate (UMEND) reads. UMEND reads typically constitute over 80% of the reads in a high quality experiment with sufficient starting material. We compared gene expression across the subsets of reads to calculate how many UMEND reads are required to produce consistent measurements. We found that, on average, genes expressed at 1-5 TPM in our data require 30 million reads to be accurately measured. For this calculation, we define accuracy as the condition in which 75% of genes are measured to within 25% of the true value. Secondly, we use these known relationships to identify genes that have been accurately measured in our tumor RNA-Seq samples. For a sample with 15 million UMEND reads, we find that genes expressed above 5 TPM can be accurately measured and are retained. In the first twelve samples analyzed, samples with more than 10 million UMEND reads retained at least 46% of the genes expressed above zero. We exclude as references those samples with fewer than 10 million UMEND reads due to the marked gene loss after thresholding for this group. Using accurately measured genes allows us to more confidently assess similarity to other samples, identify enriched pathways, and confirm the expression of drug targets and related molecules under consideration. For example, we reconsidered the CDK4 inhibitor Palbociclib in one patient because the expression of RB1, downstream effector required for Palbociclib-mediated tumor cell death, was under our accuracy threshold. Accuracy thresholds can also be used in experiment planning. Accuracy thresholding allows us to better assess the value of an RNA-Seq data set and, if necessary, identify the subset of genes whose expression can be confidently considered in a clinical setting. Our experience points to the importance of careful quality control in this process. Citation Format: Holly Beale, Du Linh Lam, John Vivian, Yulia Newton, Avanthi Tayi Shah, Isabel Bjork, Ted Goldstein, Angela N. Brooks, Josh Stuart, Sofie Salama, E. Alejandro Sweet-Cordero, David Haussler1, Olena Morozova. Identifying confidently measured genes in single pediatric cancer patient samples using RNA sequencing [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2466. doi:10.1158/1538-7445.AM2017-2466


Cancer Research | 2017

Abstract 4890: A pan-cancer analysis framework for incorporating gene expression information into clinical interpretation of pediatric cancer genomic data

Olena Morozova; Yulia Newton; Avanthi Shah; Holly Beale; Du Linh Lam; John Vivian; Isabel Bjork; Theodore C. Goldstein; Josh Stuart; Sofie R. Salama; E. Alejandro Sweet-Cordero; David Haussler

Genomic characterization used in pediatric cancer clinical trials is limited to the detection of somatic mutations and gene fusions in well-characterized cancer genes. However, these approaches do not reveal actionable therapeutic targets for the majority of pediatric cancer patients. Incorporation of gene expression information into clinical genomic analysis is hindered by the lack of appropriate computational methods, designed for single patients rather than patient cohorts. UC Santa Cruz Treehouse Childhood Cancer Initiative (treehousegenomics.soe.ucsc.edu) enables the incorporation of gene expression information into the genomic evaluation of pediatric cancer patients. We leverage large cancer RNA sequencing datasets, including The Cancer Genome Atlas, Therapeutically Applicable Research to Generate Effective Treatments, Medulloblastoma Advanced Genomics International Consortium, International Cancer Genome Consortium, and published research and clinical studies. Through our “pan-cancer analysis”, we compare each prospective tumor’s RNA sequencing and/or mutational profile to over 11,000 uniformly analyzed tumor profiles using our Tumor Map method. Tumor Map visualizes single tumors together with the reference compendium and identifies samples that are most similar to the given tumor based on the gene expression profiles. We also developed a gene expression outlier analysis to identify transcripts that are over expressed in the given tumor. These pan-cancer gene expression analyses are used in conjunction with mutation data to nominate molecular pathways that may be driving the disease in each child, providing useful information to the medical teams. We aim to evaluate this approach in partnership with pediatric cancer clinical genomic trials at Stanford University, UC San Francisco, Children’s Hospital of Orange County, University of Michigan, Children’s Mercy Hospital, and British Columbia Children’s Hospital. The analysis of the first 27 patients at Stanford, most with refractory solid tumors, provided evidence of the potential clinical utility of incorporating gene expression information into the genomic evaluation of pediatric cancer patients. In all cases, we identified candidate driver molecular pathways that could be targeted by existing FDA-approved therapies or therapies available through a clinical trial. The most frequently identified molecular targets were receptor tyrosine kinases and cyclin-dependent kinases. For 3 patients with no treatment options prior to our work, the analysis contributed to treatment decisions. This study provides a framework for incorporating gene expression information into the clinical interpretation of pediatric cancer genomic data. We underscore the importance of releasing the data to the community immediately following generation, so that they may benefit new patients. Citation Format: Olena Morozova, Yulia Newton, Avanthi Tayi Shah, Holly Beale, Du Linh Lam, John Vivian, Isabel Bjork, Theodore Goldstein, Josh Stuart, Sofie Salama, E. Alejandro Sweet-Cordero, David Haussler. A pan-cancer analysis framework for incorporating gene expression information into clinical interpretation of pediatric cancer genomic data [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4890. doi:10.1158/1538-7445.AM2017-4890

Collaboration


Dive into the Yulia Newton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Haussler

University of California

View shared research outputs
Top Co-Authors

Avatar

Kiley Graim

University of California

View shared research outputs
Top Co-Authors

Avatar

Artem Sokolov

University of California

View shared research outputs
Top Co-Authors

Avatar

Josh Stuart

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Bivol

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge