Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yulin Liao is active.

Publication


Featured researches published by Yulin Liao.


Nature Medicine | 2002

Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy

Masanori Asakura; Masafumi Kitakaze; Seiji Takashima; Yulin Liao; Fuminobu Ishikura; Tsuyoshi Yoshinaka; Hiroshi Ohmoto; Koichi Node; Kohichiro Yoshino; Hiroshi Ishiguro; Hiroshi Asanuma; Shoji Sanada; Yasushi Matsumura; Hiroshi Takeda; Shintaro Beppu; Michihiko Tada; Masatsugu Hori; Shigeki Higashiyama

G-protein–coupled receptor (GPCR) agonists are well-known inducers of cardiac hypertrophy. We found that the shedding of heparin-binding epidermal growth factor (HB-EGF) resulting from metalloproteinase activation and subsequent transactivation of the epidermal growth factor receptor occurred when cardiomyocytes were stimulated by GPCR agonists, leading to cardiac hypertrophy. A new inhibitor of HB-EGF shedding, KB-R7785, blocked this signaling. We cloned a disintegrin and metalloprotease 12 (ADAM12) as a specific enzyme to shed HB-EGF in the heart and found that dominant-negative expression of ADAM12 abrogated this signaling. KB-R7785 bound directly to ADAM12, suggesting that inhibition of ADAM12 blocked the shedding of HB-EGF. In mice with cardiac hypertrophy, KB-R7785 inhibited the shedding of HB-EGF and attenuated hypertrophic changes. These data suggest that shedding of HB-EGF by ADAM12 plays an important role in cardiac hypertrophy, and that inhibition of HB-EGF shedding could be a potent therapeutic strategy for cardiac hypertrophy.


Journal of Clinical Investigation | 2001

Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy

Masao Takemoto; Koichi Node; Hironori Nakagami; Yulin Liao; Michael C. Grimm; Yaeko Takemoto; Masafumi Kitakaze; James K. Liao

Cardiac hypertrophy is a major cause of morbidity and mortality worldwide. The hypertrophic process is mediated, in part, by small G proteins of the Rho family. We hypothesized that statins, inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, inhibit cardiac hypertrophy by blocking Rho isoprenylation. We treated neonatal rat cardiac myocytes with angiotensin II (AngII) with and without simvastatin (Sim) and found that Sim decreased AngII-induced protein content, [3H] leucine uptake, and atrial natriuretic factor (ANF) promoter activity. These effects were associated with decreases in cell size, membrane Rho activity, superoxide anion (O2*-) production, and intracellular oxidation, and were reversed with L-mevalonate or geranylgeranylpyrophosphate, but not with farnesylpyrophosphate or cholesterol. Treatments with the Rho inhibitor C3 exotoxin and with cell-permeable superoxide dismutase also decreased AngII-induced O2*- production and myocyte hypertrophy. Overexpression of the dominant-negative Rho mutant N17Rac1 completely inhibited AngII-induced intracellular oxidation and ANF promoter activity, while N19RhoA partially inhibited it, and N17Cdc42 had no effect. Indeed, Sim inhibited cardiac hypertrophy and decreased myocardial Rac1 activity and O2*- production in rats treated with AngII infusion or subjected to transaortic constriction. These findings suggest that statins prevent the development of cardiac hypertrophy through an antioxidant mechanism involving inhibition of Rac1.


Circulation | 2004

Prolonged Endoplasmic Reticulum Stress in Hypertrophic and Failing Heart After Aortic Constriction Possible Contribution of Endoplasmic Reticulum Stress to Cardiac Myocyte Apoptosis

Ken-ichiro Okada; Tetsuo Minamino; Yoshitane Tsukamoto; Yulin Liao; Osamu Tsukamoto; Seiji Takashima; Akio Hirata; Masashi Fujita; Yoko Nagamachi; Takeshi Nakatani; Chikao Yutani; Kentaro Ozawa; Satoshi Ogawa; Hitonobu Tomoike; Masatsugu Hori; Masafumi Kitakaze

Background—The endoplasmic reticulum (ER) is recognized as an organelle that participates in folding secretory and membrane proteins. The ER responds to stress by upregulating ER chaperones, but prolonged and/or excess ER stress leads to apoptosis. However, the potential role of ER stress in pathophysiological hearts remains unclear. Methods and Results—Mice were subjected to transverse aortic constriction (TAC) or sham operation. Echocardiographic analysis demonstrated that mice 1 and 4 weeks after TAC had cardiac hypertrophy and failure, respectively. Cardiac expression of ER chaperones was significantly increased 1 and 4 weeks after TAC, indicating that pressure overload by TAC induced prolonged ER stress. In addition, the number of terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL)–positive cells increased, and caspase-3 was cleaved in failing hearts. The antagonism of angiotensin II type 1 receptor prevented upregulation of ER chaperones and apoptosis in failing hearts. On the other hand, angiotensin II upregulated ER chaperones and induced apoptosis in cultured adult rat cardiac myocytes. We also investigated possible signaling pathways for ER-initiated apoptosis. The CHOP- (a transcription factor induced by ER stress), but not JNK- or caspase-12–, dependent pathway was activated in failing hearts by TAC. Pharmacological ER stress inducers upregulated ER chaperones and induced apoptosis in cultured cardiac myocytes. Finally, mRNA levels of ER chaperones were markedly increased in failing hearts of patients with elevated brain natriuretic peptide levels. Conclusions—These findings suggest that pressure overload by TAC induces prolonged ER stress, which may contribute to cardiac myocyte apoptosis during progression from cardiac hypertrophy to failure.


Circulation | 2010

Ablation of C/EBP Homologous Protein Attenuates Endoplasmic Reticulum–Mediated Apoptosis and Cardiac Dysfunction Induced by Pressure Overload

Hai Ying Fu; Ken-ichiro Okada; Yulin Liao; Osamu Tsukamoto; Tadashi Isomura; Mitsutoshi Asai; Tamaki Sawada; Keiji Okuda; Yoshihiro Asano; Shoji Sanada; Hiroshi Asanuma; Masanori Asakura; Seiji Takashima; Issei Komuro; Masafumi Kitakaze; Tetsuo Minamino

Background— Apoptosis may contribute to the development of heart failure, but the role of apoptotic signaling initiated by the endoplasmic reticulum in this condition has not been well clarified. Methods and Results— In myocardial samples from patients with heart failure, quantitative real-time polymerase chain reaction revealed an increase in messenger RNA for C/EBP homologous protein (CHOP), a transcriptional factor that mediates endoplasmic reticulum–initiated apoptotic cell death. We performed transverse aortic constriction or sham operation on wild-type (WT) and CHOP-deficient mice. The CHOP-deficient mice showed less cardiac hypertrophy, fibrosis, and cardiac dysfunction compared with WT mice at 4 weeks after transverse aortic constriction, although the contractility of isolated cardiomyocytes from CHOP-deficient mice was not significantly different from that in the WT mice. In the hearts of CHOP-deficient mice, phosphorylation of eukaryotic translation initiation factor 2&agr;, which may reduce protein translation, was enhanced compared with WT mice. In the hearts of WT mice, CHOP-increased apoptotic cell death with activation of caspase-3 was observed at 4 weeks after transverse aortic constriction. In contrast, CHOP-deficient mice had less apoptotic cell death and lower caspase-3 activation at 4 weeks after transverse aortic constriction. Furthermore, the Bcl2/Bax ratio was decreased in WT mice, whereas this change was significantly blunted in CHOP-deficient mice. Real-time polymerase chain reaction microarray analysis revealed that CHOP could regulate several Bcl2 family members in failing hearts. Conclusions— We propose the novel concept that CHOP, which may modify protein translation and mediate endoplasmic reticulum–initiated apoptotic cell death, contributes to development of cardiac hypertrophy and failure induced by pressure overload.


The EMBO Journal | 2006

Glycosaminoglycan modification of neuropilin‐1 modulates VEGFR2 signaling

Yasunori Shintani; Seiji Takashima; Yoshihiro Asano; Hisakazu Kato; Yulin Liao; Satoru Yamazaki; Osamu Tsukamoto; Osamu Seguchi; Hiroyuki Yamamoto; Tomi Fukushima; Kazuyuki Sugahara; Masafumi Kitakaze; Masatsugu Hori

Neuropilin‐1 (NRP1) is a co‐receptor for vascular endothelial growth factor (VEGF) that enhances the angiogenic signals cooperatively with VEGFR2. VEGF signaling is essential for physiological and pathological angiogenesis through its effects on vascular endothelial cells (ECs) and smooth muscle cells (SMCs), but the mechanisms coordinating this response are not well understood. Here we show that a substantial fraction of NRP1 is proteoglycan modified with either heparan sulfate or chondroitin sulfate on a single conserved Ser. The composition of the NRP1 glycosaminoglycan (GAG) chains differs between ECs and SMCs. Glycosylation increased VEGF binding in both cell types, but the differential GAG composition of NRP1 mediates opposite responsiveness to VEGF in ECs and SMCs. Finally, NRP1 expression and its GAG modification post‐transcriptionally regulate VEGFR2 protein expression. These findings indicate that GAG modification of NRP1 plays a critical role in modulating VEGF signaling, and may provide new insights into physiological and pathological angiogenesis.


Circulation Research | 2003

Activation of Adenosine A1 Receptor Attenuates Cardiac Hypertrophy and Prevents Heart Failure in Murine Left Ventricular Pressure-Overload Model

Yulin Liao; Seiji Takashima; Yoshihiro Asano; Masanori Asakura; Akiko Ogai; Yasunori Shintani; Tetsuo Minamino; Hiroshi Asanuma; Shoji Sanada; Jiyoong Kim; Hisakazu Ogita; Hitonobu Tomoike; Masatsugu Hori; Masafumi Kitakaze

Abstract— Sympathomimetic stimulation, angiotensin II, or endothelin-1 is considered to be an essential stimulus mediating ventricular hypertrophy. Adenosine is known to protect the heart from excessive catecholamine exposure, reduce production of endothelin-1, and attenuate the activation of the renin-angiotensin system. These findings suggest that adenosine may also attenuate myocardial hypertrophy. To verify this hypothesis, we examined whether activation of adenosine receptors can attenuate cardiac hypertrophy and reduce the risk of heart failure. Our in vitro study of neonatal rat cardiomyocytes showed that 2-chloroadenosine (CADO), a stable adenosine analogue, inhibits protein synthesis of cardiomyocytes induced by phenylephrine, endothelin-1, angiotensin II, or isoproterenol, which were mimicked by the stimulation of adenosine A1 receptors. For our in vivo study, cardiac hypertrophy was induced by transverse aortic constriction (TAC) in C57BL/6 male mice. Four weeks after TAC, both heart to body weight ratio (6.80±0.18 versus 8.34±0.33 mg/g, P <0.0001) as well as lung to body weight ratio (6.23±0.27 versus 10.03±0.85 mg/g, P <0.0001) became significantly lower in CADO-treated mice than in the TAC group. Left ventricular fractional shortening and left ventricular dP/dtmax were improved significantly by CADO treatment. Similar results were obtained using the selective adenosine A1 agonist N6-cyclopentyladenosine (CPA). A nonselective adenosine antagonist, 8-(p-sulfophenyl)-theophylline, and a selective adenosine A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine, eliminated the antihypertrophic effect of CADO and CPA, respectively. The plasma norepinephrine level was decreased and myocardial expression of regulator of G protein signaling 4 was upregulated in CADO-treated mice. These results indicate that the stimulation of adenosine receptors attenuates both the cardiac hypertrophy and myocardial dysfunction via adenosine A1 receptor–mediated mechanisms.


International Journal of Cancer | 2013

Metastasis-associated in colon cancer-1 upregulation predicts a poor prognosis of gastric cancer, and promotes tumor cell proliferation and invasion.

Lin Wang; Yajun Wu; Li Lin; Pengmin Liu; Hui Huang; Wenjun Liao; Dayong Zheng; Qiang Zuo; Li Sun; Na Huang; Min Shi; Yulin Liao; Wangjun Liao

Metastasis‐associated in colon cancer‐1 (MACC1) is a newly identified oncogene, and little is known about its role in gastric cancer (GC). Our study was performed to investigate whether MACC1 influences the prognosis of GC patients and to explore the potential mechanisms involved. MACC1 expression was verified to be higher in GC tissues than in adjacent nontumorous tissues by Western blotting. A retrospective analysis of 361 GC patients (Stages I–IV) revealed that higher MACC1 expression was associated with more advanced disease, more frequent postoperative recurrence, more metastases and a higher mortality rate. The disease‐free survival of Stage I–III patients and overall survival of Stage‐IV patients were significantly worse when their tumors showed high MACC1 expression. To investigate the underlying mechanisms, MACC1 overexpression and downregulation were established in two GC cell lines (BGC‐823 and MKN‐28 cells). MACC1 overexpression significantly accelerated tumor growth and facilitated metastasis in athymic mice. MACC1 also promoted the proliferation, migration and invasion of both GC cell lines. Moreover, gastric MACC1 mRNA expression levels were significantly correlated with markers of the epithelial‐to‐mesenchymal transition (EMT) in patients with GC. MACC1 overexpression upregulated mesenchymal–epithelial transition factor and induced changes to markers of EMT, whereas silencing of MACC1 reversed all these changes. These findings provide some novel insights into the role of MACC1, a gene that contributes to a poor prognosis of GC by promoting tumor cell proliferation and invasion as well as the EMT.


Hypertension | 2003

Long-Acting Ca2+ Blockers Prevent Myocardial Remodeling Induced by Chronic NO Inhibition in Rats

Shoji Sanada; Koichi Node; Tetsuo Minamino; Seiji Takashima; Akiko Ogai; Hiroshi Asanuma; Hisakazu Ogita; Yulin Liao; Masanori Asakura; Jiyoong Kim; Masatsugu Hori; Masafumi Kitakaze

Abstract—Chronic inhibition of nitric oxide (NO) synthesis induces cardiac remodeling independent of systemic hemodynamic changes in rats. We examined whether long-acting dihydropyridine calcium channel blockers block myocardial remodeling and whether the activation of 70-kDa S6 kinase (p70S6K) and extracellular signal-regulated kinase (ERK) are involved. Ten groups of Wistar-Kyoto rats underwent 8 weeks of drug treatment consisting of a combination of NO synthase inhibitor NG-nitro-l-arginine methyl ester (L-NAME), an inactive isomer (D-NAME), amlodipine (1 or 3 mg/kg per day), or benidipine (3 or 10 mg/kg per day). In other groups, L-NAME was also used in combination with a p70S6K inhibitor (rapamycin), a MEK inhibitor (PD98059), and hydralazine. Systolic blood pressure (SBP), heart rate, and left ventricular weight (LVW) were measured, together with histological examinations and kinase assay. L-NAME increased SBP and LVW (1048±22 versus 780±18 mg, P <0.01) compared with the control, showing a significant increase in cross-sectional area of cardiomyocytes after 8 weeks. Amlodipine, benidipine, or hydralazine equally attenuated the increase in SBP induced by L-NAME. However, both amlodipine and benidipine but not hydralazine attenuated the increase in LVW by L-NAME (789±27, 825±20 mg, P <0.01, and 1118±29 mg, NS, respectively), also confirmed by histological analysis. L-NAME caused a 2.2-fold/1.8-fold increase in p70S6K/ERK activity in myocardium compared with the control, both of which were attenuated by both amlodipine and benidipine but not hydralazine. Both rapamycin and PD98059 attenuated cardiac hypertrophy in this model. Thus, long-acting dihydropyridine calcium channel blockers inhibited cardiac hypertrophy induced by chronic inhibition of NO synthesis by inhibiting both p70S6K and ERK in vivo.


Biochemical and Biophysical Research Communications | 2010

Identification of genes related to heart failure using global gene expression profiling of human failing myocardium.

Kyung-Duk Min; Masanori Asakura; Yulin Liao; Kenji Nakamaru; Hidetoshi Okazaki; Tomoko Takahashi; Kazunori Fujimoto; Shin Ito; Ayako Takahashi; Hiroshi Asanuma; Satoru Yamazaki; Tetsuo Minamino; Shoji Sanada; Osamu Seguchi; Atsushi Nakano; Yosuke Ando; Toshiaki Otsuka; Hidehiko Furukawa; Tadashi Isomura; Seiji Takashima; Naoki Mochizuki; Masafumi Kitakaze

Although various management methods have been developed for heart failure, it is necessary to investigate the diagnostic or therapeutic targets of heart failure. Accordingly, we have developed different approaches for managing heart failure by using conventional microarray analyses. We analyzed gene expression profiles of myocardial samples from 12 patients with heart failure and constructed datasets of heart failure-associated genes using clinical parameters such as pulmonary artery pressure (PAP) and ejection fraction (EF). From these 12 genes, we selected four genes with high expression levels in the heart, and examined their novelty by performing a literature-based search. In addition, we included four G-protein-coupled receptor (GPCR)-encoding genes, three enzyme-encoding genes, and one ion-channel protein-encoding gene to identify a drug target for heart failure using in silico microarray database. After the in vitro functional screening using adenovirus transfections of 12 genes into rat cardiomyocytes, we generated gene-targeting mice of five candidate genes, namely, MYLK3, GPR37L1, GPR35, MMP23, and NBC1. The results revealed that systolic blood pressure differed significantly between GPR35-KO and GPR35-WT mice as well as between GPR37L1-Tg and GPR37L1-KO mice. Further, the heart weight/body weight ratio between MYLK3-Tg and MYLK3-WT mice and between GPR37L1-Tg and GPR37L1-KO mice differed significantly. Hence, microarray analysis combined with clinical parameters can be an effective method to identify novel therapeutic targets for the prevention or management of heart failure.


Journal of Translational Medicine | 2014

XB130 promotes proliferation and invasion of gastric cancer cells

Min Shi; Dayong Zheng; Li Sun; Lin Wang; Li Lin; Yajun Wu; Minyu Zhou; Wenjun Liao; Yulin Liao; Qiang Zuo; Wangjun Liao

BackgroundXB130 has been reported to be expressed by various types of cells such as thyroid cancer and esophageal cancer cells, and it promotes the proliferation and invasion of thyroid cancer cells. Our previous study demonstrated that XB130 is also expressed in gastric cancer (GC), and that its expression is associated with the prognosis, but the role of XB130 in GC has not been well characterized.MethodsIn this study, we investigated the influence of XB130 on gastric tumorigenesis and metastasis in vivo and in vitro using the MTT assay, clonogenic assay, BrdU incorporation assay, 3D culture, immunohistochemistry and immunofluorescence. Western blot analysis was also performed to identify the potential mechanisms involved.ResultsThe proliferation, migration, and invasion of SGC7901 and MNK45 gastric adenocarcinoma cell lines were all significantly inhibited by knockdown of XB130 using small hairpin RNA. In a xenograft model, tumor growth was markedly inhibited after shXB130-transfected GC cells were implanted into nude mice. After XB130 knockdown, GC cells showed a more epithelial-like phenotype, suggesting an inhibition of the epithelial-mesenchymal transition (EMT) process. In addition, silencing of XB130 reduced the expression of p-Akt/Akt, upregulated expression of epithelial markers including E-cadherin, α-catenin and β-catenin, and downregulated mesenchymal markers including fibronectin and vimentin. Expression of oncoproteins related to tumor metastasis, such as MMP2, MMP9, and CD44, was also significantly reduced.ConclusionsThese findings indicate that XB130 enhances cell motility and invasiveness by modulating the EMT-like process, while silencing XB130 in GC suppresses tumorigenesis and metastasis, suggesting that it may be a potential therapeutic target.

Collaboration


Dive into the Yulin Liao's collaboration.

Top Co-Authors

Avatar

Jianping Bin

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Masafumi Kitakaze

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Wangjun Liao

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge