Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuliya Kalmykova is active.

Publication


Featured researches published by Yuliya Kalmykova.


Waste Management | 2013

Phosphorus recovery from municipal solid waste incineration fly ash

Yuliya Kalmykova; Karin Karlfeldt Fedje

The potential of phosphorus (P) recycling from municipal solid waste incineration (MSWI) residue is investigated. Vast and ever increasing amounts of incineration residues are produced worldwide; these are an environmental burden, but also a resource, as they are a major sink for the material flows of society. Due to strict environmental regulations, in combination with decreasing landfilling space, the disposal of the MSWI residues is problematic. At the same time, resource scarcity is recognized as a global challenge for the modern world, and even more so for future generations. This paper reports on the methods and efficiency of P extraction from MSWI fly ash by acid and base leaching and precipitation procedures. Phosphorus extracted from the MSWI residues generated each year could meet 30% of the annual demand for mineral phosphorus fertiliser in Sweden, given a recovery rate of 70% achieved in this initial test. The phosphorus content of the obtained product is slightly higher than in sewage sludge, but due to the trace metal content it is not acceptable for application to agricultural land in Sweden, whereas application in the rest of the EU would be possible. However, it would be preferable to use the product as a raw material to replace rock phosphate in fertilizer production. Further development is currently underway in relation to procedure optimization, purification of the phosphorus product, and the simultaneous recovery of other resources.


Journal of Industrial Ecology | 2012

Pathways and Management of Phosphorus in urban areas

Yuliya Kalmykova; Robin Harder; Helena Borgestedt; Ingela Svanäng

Due to the finite nature of mineral phosphorus reserves, effective management of anthropogenic phosphorus flows is currently under investigation by the international research community. This article emphasizes the importance of urban phosphorus flows, which are often marginalized due to the greater magnitude of agricultural phosphorus flows. A study on phosphorus flows in Gothenburg, Sweden, points out the potential role of solid waste in nutrient management, as the amounts of phosphorus in solid waste and in wastewater were found to be equal. Importation of food commodities accounts for 50% of the total inflow of phosphorus, and food waste is a major contributor of phosphorus to solid waste. The results suggest that solid waste incineration residues represent a large underestimated sink of phosphorus. Focusing on wastewater as the sole source of recovered phosphorus is not sufficient. The Swedish national goal on phosphorus recycling, which is limited to sewage sludge, targets only a part of the total phosphorus flow that can potentially be recovered. In contrast to previous studies, agricultural flows in Gothenburg were marginal compared to flows related to the urban waste management infrastructure. We emphasize the need for debate on preferable routes for disposal of waste with a high phosphorus content. Both recovery potential and usefulness of the recovered product for agricultural purposes have to be considered. Impacts of five waste management strategies on phosphorus flows were evaluated: incineration of all the waste, comprehensive food waste separation, installation of kitchen grinders, urine diversion, and separation of blackwater and food waste.


Water Research | 2014

Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters

Yuliya Kalmykova; Nashita Moona; Ann-Margret Hvitt Strömvall; Karin Björklund

Landfill leachates are repeatedly found contaminated with organic pollutants, such as alkylphenols (APs), phthalates and polycyclic aromatic hydrocarbons (PAHs) at levels exceeding water quality standards. It has been shown that these pollutants may be present in the colloidal and truly dissolved phase in contaminated water, making particle separation an inefficient removal method. The aim of this study was to investigate sorption and degradation of petroleum hydrocarbons (PHCs), selected APs, bisphenol A (BPA), phthalates and PAHs from landfill leachate using sand, granulated activated carbon (GAC) and peat moss filters. A pilot plant was installed at an inactive landfill with mixed industrial and household waste and samples were collected before and after each filter during two years. Leachate pre-treated in oil separator and sedimentation pond failed to meet water quality standards in most samples and little improvement was seen after the sand filter. These techniques are based on particle removal, whereas the analysed pollutants are found, to varying degrees, bound to colloids or dissolved. However, even highly hydrophobic compounds expected to be particle-bound, such as the PHCs and high-molecular weight PAHs, were poorly removed in the sand filter. The APs and BPA were completely removed by the GAC filter, while mass balance calculations indicate that 50-80% of the investigated phenols were removed in the peat filter. Results suggest possible AP degradation in peat filters. No evidence of phthalate degradation in the landfill, pond or the filters was found. The PHCs were completely removed in 50% and 35% of the measured occasions in the GAC and peat filters, respectively. The opposite trend was seen for removal of PAHs in GAC (50%) and peat (63%). Oxygenated PAHs with high toxicity were found in the leachates but not in the pond sediment. These compounds are likely formed in the pond water, which is alarming because sedimentation ponds are commonly used treatment techniques. The oxy-PAHs were effectively removed in the GAC, and especially the peat filter. It was hypothesized that dissolved compounds would adsorb equally well to the peat and GAC filters. This was not completely supported as the GAC filter was in general more efficient than peat.


Environmental Technology | 2008

ALTERNATIVE MATERIALS FOR ADSORPTION OF HEAVY METALS AND PETROLEUM HYDROCARBONS FROM CONTAMINATED LEACHATES

Yuliya Kalmykova; Ann-Margret Hvitt Strömvall; Britt-Marie Steenari

ABSTRACT In the present work, waste products from forest industries (sawdust, pine bark and fibre sludge ash), as well as some biological materials (peat, shrimp shells and seaweed), have been investigated with respect to their capacities to adsorb metals and hydrocarbons from contaminated waters. Batch and column experiments were carried out with artificial metal ion solutions and contaminated leachates from an industrial landfill. The fibre sludge ash and the Sphagnum peat showed the highest sorption capacities for metals among the materials studied in batch experiments with single‐metal solutions. The uptake of metals by the fibre ash for the metals studied was: Cu and Pb 112 μg g−1, Zn 115 μg g−1 and Cr 97 μg g−1. For peat the uptake was: Pb 109 μg g−1, Cu 105 μg g−1, Zn 100 μg g−1 and Cr 99 μg g−1. These materials were also effective in adsorption of diesel oil, and the n‐alkanes C16 and C12. Peat and ash adsorbed respectively 36.6 and 36.4 mg g−1 of C12, 1.84 and 1.94 mg g−1 of C16 and for both 0.98 mg g−1 of diesel oil. Bark adsorbed diesel oil to 0.83 mg g−1. In the column experiments, the removal of metals from a contaminated landfill leachate by ash and peat was lower than from artificial solutions with only a few metals. The results suggest interference from other components in the leachates, such as competition of ions for the same active sites. It is quite clear that laboratory tests can overestimate the performance of adsorbents and that experiments should be specific for the intended application. For most of the metals studied in columns, peat appeared to be the best adsorbent, with respect to both sorption capacity and service time. The addition of 10 % by weight of fibre ash to the peat gave higher adsorption capacities for Cd, Ni and Pb but lower for the Cu and Zn.


Journal of Industrial Ecology | 2015

Uncertainty in Material Flow Analysis Indicators at Different Spatial Levels

João Patrício; Yuliya Kalmykova; Leonardo Rosado; Vera Lisovskaja

Material flow analysis (MFA) is a tool for research and decision support in environmental policy and management. In order to promote the use of MFA at different spatial scales, a quantification of the uncertainty in nationwide, regional, and urban MFA methodologies is provided. In particular, the impact of the input data quality on the main MFA indicators is analyzed and the sources and extent of uncertainties for different spatial scales are listed. The types, origin, and extent of the errors are described in detail and several imputation methods are explained and evaluated. By introducing a novel approach to account measurement errors in data sets with very few details on the measurement errors, this article aims at contributing to the development of a standardized method to account for the uncertainty in MFA studies. This study uses the time series of MFA data for 1996-2011 at three spatial scalesnationwide (Sweden), regional (the Stockholm Region), and metropolitan (Stockholm, Gothenburg, and Malmo)to determine how propagation of measurement errors affects the MFA results. The following MFA indicators were studied: direct material input; domestic processed output; and domestic material consumption. Generally, availability decreased as the spatial scale was lowered, whereas data errors increased. In the specific case of Sweden, the data on freight transport by rail and on waste produced by economic activities at the regional and metropolitan level should be improved.


Science of The Total Environment | 2015

Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater - Using humic acid and iron nano-sized colloids as test particles

Katrine Nielsen; Yuliya Kalmykova; Ann-Margret Hvitt Strömvall; Anders Baun; Eva Eriksson

The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (<10nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater.


Waste Management | 2015

Out with the old, out with the new – The effect of transitions in TVs and monitors technology on consumption and WEEE generation in Sweden 1996–2014

Yuliya Kalmykova; João Patrício; Leonardo Rosado; Per E. O. Berg

The recycling of Waste Electrical and Electronic Equipment (WEEE) is important due to its content of valuable and hazardous compounds. This study investigates the case of the recent technology change within television sets (TVs) and monitors, its impact on the generation of WEEE, and the implications for the recycling industry. In particular, material flow analysis for the time series of 1996-2014 for TVs and monitors by type of technology (CRT, Plasma and LCD) in physical units is combined with empirical data on product lifespans. The number of consumed TVs and monitors has grown exponentially. As a result, despite a 3-fold reduction in the weight of the products, the weight of the corresponding WEEE is also growing exponentially. Out with the old, out with the new - a peak in WEEE from both CRT and flat-screen displays is expected during 2014-2020, due to the simultaneous obsolesce of the last wave of CRT products and the short-lived flat-screen products that substituted the CRTs. The lifespans of LCD and LED TVs were found to be three times shorter than of the CRT TVs, with many TVs discarded while still functional. This is the consequence of two events - replacement of the CRT TVs in combination with lifestyle purchases of TVs, i.e. the premature replacement of flat-screen displays with new sets with extra-large screens and/or new features. The throughput of TVs and monitors consumed has been estimated annually from 2014 until 2040, by quantity and type of device, as well as by component and material type. The annual economic value of the corresponding secondary materials, by material type, has also been estimated. The point in time when the final disposal of CRT products is likely to take place has been identified and should be noted by the recycling industry. Among the important contributions of this study to the accounting and predicting of amounts and types of WEEE are the lifespan distributions, size and weight distributions, and material composition for TVs and monitors of different technology. Directions for method application in other countries are given.


Water Environment Research | 2010

Colloid-facilitated metal transport in peat filters.

Yuliya Kalmykova; Sebastien Rauch; Ann-Margret Hvitt Strömvall; Greg Morrison; Björn Stolpe; Martin Hassellöv

The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.


Science of The Total Environment | 2017

Emissions of organic pollutants from traffic and roads: Priority pollutants selection and substance flow analysis.

Anna Markiewicz; Karin Björklund; Eva Eriksson; Yuliya Kalmykova; Ann-Margret Hvitt Strömvall; A. Siopi

A large number of organic pollutants (OPs) emitted from vehicles and traffic-related activities exhibit environmental persistence and a tendency to bioaccumulate, and may have detrimental long-term effects on aquatic life. The aim of the study was to establish a list of significant sources of OPs occurring in road runoff, identify the OPs emitted from these sources, select a number of priority pollutants (PP), and estimate the quantity of PPs emitted in a road environment case study using substance flow analysis (SFA). The priority pollutants included in the SFA were selected from a list of approximately 1100 compounds found after comprehensive screening, including literature and database searches, expert judgments, the Ranking and Identification of Chemical Hazards method, and chemical analysis of sediments. The results showed the following priority order: polycyclic aromatic hydrocarbons (PAHs)>alkanes C20-C40>alkylphenols>phthalates>aldehydes>phenolic antioxidants>bisphenol A>oxygenated-PAHs>naphtha C5-C12>amides>amines. Among these, PAHs were chosen for a SFA, which was performed for a highway case study area in Gothenburg (Sweden). The SFA showed that the main sources of PAHs emitted in the area were vehicle exhaust gases, followed by tyre wear, motor lubricant oils, road surface wear, and brake linings. Only 2-6% of the total 5.8-29kg annually emitted PAHs/ha ended up in the stormwater sewer system. The measured PAH loads were found in much smaller amounts than the calculated loads and the outflow to stormwater contained much more of the hazardous PAHs than the total loads emitted in the catchment area.


Environmental Science & Technology | 2015

Urban Economies Resource Productivity and Decoupling: Metabolism Trends of 1996-2011 in Sweden, Stockholm, and Gothenburg

Yuliya Kalmykova; Leonardo Rosado; João Patrício

Resource productivity and evidence of economic decoupling were investigated on the basis of the time series in 1996-2011 of material flow analysis for Sweden, Stockholm, and Gothenburg. In the three cases, absolute reductions in CO2 emissions by about 20% were observed, energy consumption per capita decreased, while gross domestic product (GDP) per capita grew. The energy consumption of the residential and public sectors decreased drastically, while the transport energy consumption is still growing steadily. Decoupling of the economy as a whole (i.e., including materials) is not yet happening at any scale. The domestic material consumption (DMC) continues to increase, in parallel with the GDP. The rate of increase for DMC is slower than that for GDP in both Stockholm and Sweden as a whole (i.e., relative decoupling). The metabolism of the cities does not replicate the national metabolism, and the two cities each have their own distinct metabolism profiles. As a consequence, policy implications for each of the case studies were suggested. In general, because of the necessarily different roles of the two cities in the national economy, generic resource productivity benchmarks, such as CO2 per capita, should be avoided in favor of sectorial benchmarks, such as industry, transport, or residential CO2 per capita. In addition, the share of the city impacts caused by the provision of a service for the rest of the country, such as a port, could be allocated to the national economy.

Collaboration


Dive into the Yuliya Kalmykova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Rosado

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

João Patrício

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Britt-Marie Steenari

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Greg Morrison

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Karin Björklund

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Karin Karlfeldt Fedje

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Per E. O. Berg

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sebastien Rauch

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eva Eriksson

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge