Yulong Jin
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yulong Jin.
Analytical Chemistry | 2015
Shilang Gui; Yanyan Huang; Fang Hu; Yulong Jin; Guanxin Zhang; Liushui Yan; Deqing Zhang; Rui Zhao
Herein, a new fluorescence turn-on chemosensor 2-(4-(1,2,2-triphenylvinyl)phenoxy)acetic acid (TPE-COOH) specific for Al(3+) was presented by combining the aggregation-induced-emission (AIE) effect of tertaphenylethylene and the complexation capability of carboxyl. The introduction of carboxylic group provides the probe with good water-solubility which is important for analyzing biological samples. The recognition toward Al(3+) induced the molecular aggregation and activated the blue fluorescence of the TPE core. The high selectivity of the probe was demonstrated by discriminating Al(3+) over a variety of metal ions in a complex mixture. A detection limit down to 21.6 nM was determined for Al(3+) quantitation. Furthermore, benefiting from its good water solubility and biocompatibility, imaging detection and real-time monitoring of Al(3+) in living HeLa cells were successfully achieved. The AIE effect of the probe enables high signal-to-noise ratio for bioimaging even without multiple washing steps. These superiorities make this probe a great potential for the functional study and analysis of Al(3+) in complex biosystems.
ACS Applied Materials & Interfaces | 2014
Yonghuan He; Yanyan Huang; Yulong Jin; Xiangjun Liu; Guoquan Liu; Rui Zhao
The construction of molecularly imprinted polymers on magnetic nanoparticles gives access to smart materials with dual functions of target recognition and magnetic separation. In this study, the superparamagnetic surface-molecularly imprinted nanoparticles were prepared via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization using ofloxacin (OFX) as template for the separation of fluoroquinolones (FQs). Benefiting from the living/controlled nature of RAFT reaction, distinct core-shell structure was successfully constructed. The highly uniform nanoscale MIP layer was homogeneously grafted on the surface of RAFT agent TTCA modified Fe3O4@SiO2 nanoparticles, which favors the fast mass transfer and rapid binding kinetics. The target binding assays demonstrate the desirable adsorption capacity and imprinting efficiency of Fe3O4@MIP. High selectivity of Fe3O4@MIP toward FQs (ofloxacin, pefloxacin, enrofloxacin, norfloxacin, and gatifloxacin) was exhibited by competitive binding assay. The Fe3O4@MIP nanoparticles were successfully applied for the direct enrichment of five FQs from human urine. The spiked human urine samples were determined and the recoveries ranging from 83.1 to 103.1% were obtained with RSD of 0.8-8.2% (n = 3). This work provides a versatile approach for the fabrication of well-defined MIP on nanomaterials for the analysis of complicated biosystems.
Journal of Chromatography A | 2014
Yongliang Liu; Yonghuan He; Yulong Jin; Yanyan Huang; Guoquan Liu; Rui Zhao
Porous polymers have aroused extensive attention due to their controllable porous structure in favor of mass transfer and binding capacity. In this work, the novel macroporous core-shell molecularly imprinted polymers (MIP) for selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared by surface initiated atom transfer radical polymerization (si-ATRP). By using one-step swelling and polymerization method, the monodispersed macroporous poly(glycidyl methacrylate) (PGMA) particles were synthesized and used as supporting matrix for preparing surface MIP particles (PGMA@MIP). Thanks to the inner and outer surface-located binding cavities and the macroporous structure, the PGMA@MIPs revealed desirable efficiency for template removal and mass transfer, and thus excellent accessibility and affinity toward template 2,4-D. Moreover, PGMA@MIPs exhibited much higher selectivity toward 2,4-D than PGMA@NIPs. PGMA@MIP particles were directly used to selectively enrich 2,4-D from tap water and the recoveries of 2,4-D were obtained as 90.0-93.4% with relative standard division of 3.1-3.4% (n=3). The macroporous PGMA@MIPs also possessed steady and excellent reusable performance for 2,4-D in four extraction/stripping cycles. This novel macroporous core-shell imprinted material may become a powerful tool for rapid and efficient enrichment and separation of target compounds from the complicated samples.
Analytical Chemistry | 2016
Yang Yu; Yanyan Huang; Fang Hu; Yulong Jin; Guanxin Zhang; Deqing Zhang; Rui Zhao
Smart and versatile nanostructures have demonstrated their effectiveness for biomolecule analysis and show great potential in digging insights into the structural/functional relationships. Herein, a nanoscale molecular self-assembly was constructed for probing the site-specific recognition and conformational changes of human serum albumin (HSA) with tunable size and emission. A tetraphenylethylene derivative TPE-red-COOH was used as the building block for tailoring fluorescence-silent nanoparticles. The highly specific and sensitive response to HSA was witnessed by the fast turn-on of the red fluorescence and simultaneous disassembly of the nanostructures, whereas various endogenous biomolecules cannot induce such response. The mechanism investigation indicates that the combination of multiple noncovalent interactions is the driving force for disassembling and trapping TPE-red-COOH into HSA. The resultant restriction of intramolecular rotation of TPE-red-COOH in the hydrophobic cavity of HSA induces the significant red emission. By using the fluorescence activatable nanosensor as the structural indicator, the stepwise conformational transitions of HSA during denaturing and the partial refolding of subdomain IIA of HSA were facilely visualized. Benefiting from its activatable signaling, sensitivity, and simplicity, such molecular assembly provides a kind of soft nanomaterial for site-specific biomolecule probing and conformational transition detection concerning their structure, function, and biomedical characteristics.
Analyst | 2013
Weizhi Wang; Yanyan Huang; Yulong Jin; Guoquan Liu; Yi Chen; Huimin Ma; Rui Zhao
A novel integrated microfluidic system was designed and fabricated for affinity peptide screening with in situ detection. A tetra-layer microfluidic hybrid chip containing two top eccentric diffluent layers, an inter-layer and a bottom screening layer, was developed as the core device of the system. The eccentric diffluent layers were ingeniously invented for the vertical sample delivery from 2 top-inlets into 12 bottom-inlets, which eliminated the use of excessive accessories and complicated pipelines currently used in other systems. By using six pH gradient generators, the magnetic bead-based screening in 36 parallel chambers was simultaneously carried out under 6 different pH conditions from 5.4 to 8.2. This allowed simultaneous screening of 6 compounds and each under 6 different pH conditions. The fabricated chip system was applied to screening of affinity peptides towards β-endorphin antibody. The affinities of the peptide ligands to the antibody were assessed by on-chip confocal detection. The results from the screening study using this system indicated that the pentapeptide with the sequence of YGGFL had the highest affinity towards β-endorphin antibody at pH 7.1, which was further confirmed by the ELISA assay using a 96-well plate format. This microfluidic screening system is automatic, low-cost and reusable for not only peptide screening but also other bioactive compounds screening towards target molecules.
Biosensors and Bioelectronics | 2017
Yang Yu; Yanyan Huang; Yulong Jin; Rui Zhao
Peptide-protein interactions mediate numerous biologic processes and provide great opportunity for developing peptide probes and analytical approaches for detecting and interfering with recognition events. Molecular interactions usually take place on the heterogeneous surface of proteins, and the spatial distribution and arrangement of probes are therefore crucial for achieving high specificity and sensitivity in the bioassays. In this study, small linear peptides, homogenous peptide dimers and hetero bivalent peptides were designed for site-specific recognition of human serum albumin (HSA). Three hydrophilic regions located at different subdomains of HSA were chosen as targets for the molecular design. The binding affinity, selectivity and kinetics of the candidates were screened with surface plasmon resonance imaging (SPRi) and fluoroimmuno assays. Benefiting from the synergistic effect from the surface-targeted peptide binders and the flexible spacer, a heterogenetic dimer peptide (heter-7) with fast binding and slow dissociation behavior was identified as the optimized probe. Heter-7 specifically recognizes the target protein HSA, and effectively blocks the binding of antibody to HSA. Its inhibitory activity was estimated as 83nM. It is noteworthy that heter-7 can distinguish serum albumins from different species despite high similarities in sequence and structure of these proteins. This hetero bivalent peptide shows promise for use in serum proteomics, disease detection and drug transport, and provides an effective approach for promoting the affinity and selectivity of ligands to achieve desirable chemical and biological outcomes.
Talanta | 2012
Yulong Jin; Yanyan Huang; Yunfeng Xie; Wenbing Hu; Fuyi Wang; Guoquan Liu; Rui Zhao
The cyclic oxidation and reduction of methionine (Met) containing peptides and proteins play important roles in biological system. This work was contributed to analysis the cyclic oxidation and reduction processes of a methionine containing peptide which is very likely to relate in the cell signal transduction pathways. To mimic the biological oxidation condition, hydrogen peroxide was used as the reactive oxygen species to oxidize the peptide. Reversed-phase high-performance liquid chromatography and mass spectrometry were employed to monitor the reactions and characterize the structural changes of the products. A rapid reduction procedure was developed by simply using KI as the reductant, which is green and highly efficient. By investigation of the cyclic oxidation and reduction process, our work provides a new perspective to study the function and mechanism of Met containing peptides and proteins during cell signaling processes as well as diseases.
Talanta | 2017
Le Sheng; Yulong Jin; Yonghuan He; Yanyan Huang; Liushui Yan; Rui Zhao
Superparamagnetic core-shell molecularly imprinted polymer nanoparticles (MIPs) were prepared via surface initiated reversible-addition fragmentation chain transfer (si-RAFT) polymerization for the selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) in real samples. The construction of uniform core-shell structure with a 50nm MIP layer was successfully accomplished, which favored mass transfer and resulted in fast recognition kinetics. The static equilibrium experiments revealed the satisfied adsorption capacity and imprinting efficiency of Fe3O4@MIP. Moreover, the Fe3O4@MIP exhibited high selectivity and affinity towards 2,4-D over structural analogues. The prepared Fe3O4@MIP nanoparticles were used for the selective enrichment of 2,4-D in tap water and Chinese cabbage samples. Combined with RP-HPLC, the recoveries of 2,4-D were calculated from 93.1% to 103.3% with RSD of 1.7-5.4% (n = 3) in Chinese cabbage samples. This work provides a versatile approach for fabricating well-constructed core-shell MIP nanoparticles for rapid enrichment and highly selective separation of target molecules in real samples.
ACS Applied Materials & Interfaces | 2017
Yulong Jin; Yunfeng Xie; Kui Wu; Yanyan Huang; Fuyi Wang; Rui Zhao
The binding events between damaged DNA and recognition biomolecules are of great interest for understanding the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing of the dynamic molecular recognition between cisplatin-damaged-DNA (cisPt-DNA) and a cellular responsive protein, high-mobility-group box 1 (HMGB1). By integration of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated. The highly specific sensing interface was carefully designed and fabricated using cisPt-DNA as recognition element. A hybrid self-assembled monolayer consisting of cysteamine and mercaptohexanol was introduced to resist nonspecific adsorption. The calculated kinetic parameters (kass and kdiss) and the dissociation constant (KD) demonstrated the rapid recognition and tight binding of HMGB1a toward cisPt-DNA. Molecular docking was employed to simulate the complex formed by cisPt-DNA and HMGB1a. The tight binding of such a DNA-damage responsive complex is appealing for the downstream molecular recognition event related to the resistance to DNA repair. This continuous-flow QCM biosensor is an ideal tool for studying specific interactions between drug-damaged-DNAs and their recognition proteins in a physiological-relevant environment, and will provide a potential sensor platform for rapid screening and evaluating metal anticancer drugs.
Science China-chemistry | 2016
Yanyan Huang; Yulong Jin; Rui Zhao
The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens, which is a straight-forward way for targeted analysis. However, there are still limitations during the practical applications due to the big size of the antibodies, which accelerate the discovery of small molecular probes. Peptides built from various optional building blocks and easily achieved by chemical synthetic approaches with predictable conformations, are versatile and can act as tailor-made targeting vehicles. In this mini review, we summarize the recent developments in the discovery of novel peptides for bioanalytical and biomedical applications. Progresses in peptide-library design and selection strategies are presented. Recent achievements in the peptide-guided detection, imaging and disease treatment are also focused.