Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yulong Zhou is active.

Publication


Featured researches published by Yulong Zhou.


Molecular Neurobiology | 2017

Metformin Improves Functional Recovery After Spinal Cord Injury via Autophagy Flux Stimulation.

Di Zhang; Jun Xuan; Binbin Zheng; Yulong Zhou; Yan Lin; Yaosen Wu; Yifei Zhou; Yixing Huang; Quan Wang; Li-yan Shen; Cong Mao; Yan Wu; Xiang-Yang Wang; Nai-Feng Tian; Hua-Zi Xu; Xiaolei Zhang

Spinal cord injury (SCI) is a severe neurological disease with few efficacious drugs. Autophagy is a cellular process to confront with stress after SCI and considered to be a therapeutic target of SCI. In this study, we investigated the therapeutic effect of metformin on functional recovery after SCI and its underlying mechanism of autophagy regulation. Using a rat model of traumatic SCI, we found improved function recovery which was paralleled by a reduction of apoptosis after metformin treatment. We further examined autophagy via detecting autophagosomes by transmission electron microscopy and immunofluorescence, as well as autophagy markers by western blot in each groups. The results showed that the number of autophagosomes and expression of autophagy markers such as LC3 and beclin1 were increased in SCI group, while autophagy substrate protein p62 as well as ubiquitinated proteins were found to accumulate in SCI group, indicating an impaired autophagy flux in SCI. But, metformin treatment attenuated the accumulation of p62 and ubiquitinated proteins, suggesting a stimulative effect of autophagy flux by metformin. Blockage of autophagy flux by chloroquine partially abolished the apoptosis inhibition and functional recovery effect of metformin on SCI, which suggested that the protective effect of metformin on SCI was through autophagy flux stimulation. Activation of AMPK as well as inhibition of its downstream mTOR signaling were detected under metformin treatment in vivo and in vitro; inhibition of AMPK signaling by compound C suppressed autophagy flux induced by metformin in vitro, indicating that AMPK signaling was involved in the effect of metformin on autophagy flux regulation. Together, these results illustrated that metformin improved functional recovery effect through autophagy flux stimulation and implied metformin to be a potential drug for SCI therapy.


Neurochemical Research | 2016

Retinoic Acid Prevents Disruption of Blood-Spinal Cord Barrier by Inducing Autophagic Flux After Spinal Cord Injury

Yulong Zhou; Binbin Zheng; Hongyu Zhang; Sipin Zhu; Xiaomeng Zheng; Qing-Hai Xia; Zili He; Qingqing Wang; Jian Xiao; Hua-Zi Xu

Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB), which leads to infiltration of blood cells, inflammatory responses and neuronal cell death, with subsequent development of spinal cord secondary damage. Recent reports pointed to an important role of retinoic acid (RA), the active metabolite of the vitamin A, in the induction of the blood–brain barrier (BBB) during human and mouse development, however, it is unknown whether RA plays a role in maintaining BSCB integrity under the pathological conditions such as SCI. In this study, we investigated the BSCB protective role of RA both in vivo and in vitro and demonstrated that autophagy are involved in the BSCB protective effect of RA. Our data show that RA attenuated BSCB permeability and also attenuated the loss of tight junction molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in brain microvascular endothelial cells. In addition, RA administration improved functional recovery of the rat model of trauma. We also found that RA could significantly increase the expression of LC3-II and decrease the expression of p62 both in vivo and in vitro. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB and exacerbated the loss of tight junctions. Together, our studies indicate that RA improved functional recovery in part by the prevention of BSCB disruption via the activation of autophagic flux after SCI.


Journal of Cellular and Molecular Medicine | 2016

Epidermal growth factor attenuates blood-spinal cord barrier disruption via PI3K/Akt/Rac1 pathway after acute spinal cord injury

Binbin Zheng; Yulong Zhou; Sipin Zhu; Qingqing Wang; Hongxue Shi; Daqing Chen; Xiaojie Wei; Zhouguang Wang; Xiaokun Li; Jian Xiao; Hua-Zi Xu; Hongyu Zhang

After spinal cord injury (SCI), disruption of blood–spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF‐induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF‐induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K‐Akt‐Rac1 signalling pathway.


International Journal of Biological Sciences | 2016

Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury.

Yulong Zhou; Hongyu Zhang; Binbin Zheng; Sipin Zhu; Noah Ray Johnson; Zhouguang Wang; Xiaojie Wei; Daqing Chen; Guodong Cao; Xiaobing Fu; Xiaokun Li; Hua-Zi Xu; Jian Xiao

Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.


Scientific Reports | 2017

Inhibition of Endoplasmic Reticulum Stress Preserves the Integrity of Blood-Spinal Cord Barrier in Diabetic Rats Subjected to Spinal Cord Injury

Zili He; Shuang Zou; Jiayu Yin; Gao Z; Yanlong Liu; Yanqing Wu; Huacheng He; Yulong Zhou; Qingqing Wang; Jiawei Li; Fenzan Wu; Huazi Xu; Xiaofeng Jia; Jian Xiao

The blood-spinal cord barrier (BSCB) plays significance roles in recovery following spinal cord injury (SCI), and diabetes mellitus (DM) impairs endothelial cell function and integrity of BSCS. Endoplasmic reticulum (ER) stress occurs in the early stages of SCI and affects prognosis and cell survival. However, the relationship between ER stress and the integrity of BSCB in diabetic rats after SCI remains unclear. Here we observed that diabetic rats showed increased extravasation of Evans Blue (EB) dye, and loss of endothelial cells and pericytes 1 day after SCI compared to non-diabetic rats. Diabetes was also shown to induce activation of ER stress. Similar effects were observed in human brain microvascular endothelial cells. 4-phenylbutyric acid (4-PBA), an ER stress inhibitor lowered the adverse effect of diabetes on SCI, reduced EB dye extravasation, and limited the loss of endothelial cells and pericytes. Moreover, 4-PBA treatment partially reversed the degradation of tight junction and adherens junction both in vivo and in vitro. In conclusion, diabetes exacerbates the disruption of BSCB after SCI via inducing ER stress, and inhibition of ER stress by 4-PBA may play a beneficial role on the integrity of BSCB in diabetic SCI rats, leading to improved prognosis.


Oncotarget | 2017

The cross-talk between autophagy and endoplasmic reticulum stress in blood-spinal cord barrier disruption after spinal cord injury

Yulong Zhou; Yanqing Wu; Yanlong Liu; Zili He; Shuang Zou; Qingqing Wang; Jiawei Li; Zengming Zheng; Jian Chen; Fenzan Wu; Fanhua Gong; Hongyu Zhang; Huazi Xu; Jian Xiao

Spinal cord injury induces the disruption of blood-spinal cord barrier and triggers a complex array of tissue responses, including endoplasmic reticulum (ER) stress and autophagy. However, the roles of ER stress and autophagy in blood-spinal cord barrier disruption have not been discussed in acute spinal cord trauma. In the present study, we respectively detected the roles of ER stress and autophagy in blood-spinal cord barrier disruption after spinal cord injury. Besides, we also detected the cross-talking between autophagy and ER stress both in vivo and in vitro. ER stress inhibitor, 4-phenylbutyric acid, and autophagy inhibitor, chloroquine, were respectively or combinedly administrated in the model of acute spinal cord injury rats. At day 1 after spinal cord injury, blood-spinal cord barrier was disrupted and activation of ER stress and autophagy were involved in the rat model of trauma. Inhibition of ER stress by treating with 4-phenylbutyric acid decreased blood-spinal cord barrier permeability, prevented the loss of tight junction (TJ) proteins and reduced autophagy activation after spinal cord injury. On the contrary, inhibition of autophagy by treating with chloroquine exacerbated blood-spinal cord barrier permeability, promoted the loss of TJ proteins and enhanced ER stress after spinal cord injury. When 4-phenylbutyric acid and chloroquine were combinedly administrated in spinal cord injury rats, chloroquine abolished the blood-spinal cord barrier protective effect of 4-phenylbutyric acid by exacerbating ER stress after spinal cord injury, indicating that the cross-talking between autophagy and ER stress may play a central role on blood-spinal cord barrier integrity in acute spinal cord injury. The present study illustrates that ER stress induced by spinal cord injury plays a detrimental role on blood-spinal cord barrier integrity, on the contrary, autophagy induced by spinal cord injury plays a furthersome role in blood-spinal cord barrier integrity in acute spinal cord injury.


Journal of Cellular and Molecular Medicine | 2018

Fibroblast growth factors in the management of spinal cord injury

Yulong Zhou; Zhouguang Wang; Jiawei Li; Xiaokun Li; Jian Xiao

Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF‐based approaches into treatments for SCI.


Journal of Cellular and Molecular Medicine | 2017

Dl‐3‐n‐butylphthalide attenuates acute inflammatory activation in rats with spinal cord injury by inhibiting microglial TLR4/NF‐κB signalling

Zili He; Yulong Zhou; Li Lin; Qingqing Wang; Sinan Khor; Yuqin Mao; Jiawei Li; Zengming Zhen; Jian Chen; Zhenzhen Gao; Fenzan Wu; Xie Zhang; Hongyu Zhang; Hua-Zi Xu; Zhouguang Wang; Jian Xiao

In this study, we examined the neuroprotective effects and anti‐inflammatory properties of Dl‐3‐n‐butylphthalide (NBP) in Sprague‐Dawley (SD) rats following traumatic spinal cord injury (SCI) as well as microglia activation and inflammatory response both in vivo and in vitro. Our results showed that NBP improved the locomotor recovery of SD rats after SCI an significantly diminished the lesion cavity area of the spinal cord, apoptotic activity in neurons, and the number of TUNEL‐positive cells at 7 days post‐injury. NBP inhibited activation of microglia, diminished the release of inflammatory mediators, and reduced the upregulation of microglial TLR4/NF‐κB expression at 1 day post‐injury. In a co‐culture system with BV‐2 cells and PC12 cells, NBP significantly reduced the cytotoxicity of BV‐2 cells following lipopolysaccharide (LPS) stimulation. In addition, NBP reduced the activation of BV‐2 cells, diminished the release of inflammatory mediators, and inhibited microglial TLR4/NF‐κB expression in BV‐2 cells. Our findings demonstrate that NBP may have neuroprotective and anti‐inflammatory properties in the treatment of SCI by inhibiting the activation of microglia via TLR4/NF‐κB signalling.


International Journal of Biological Sciences | 2017

Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury

Binbin Zheng; Yulong Zhou; Hongyu Zhang; Guangyong Yang; Zhenghua Hong; Dandan Han; Qingqing Wang; Zili He; Yanlong Liu; Fenzan Wu; Xie Zhang; Songlin Tong; Hua-Zi Xu; Jian Xiao

After spinal cord injury (SCI), the destruction of blood-spinal cord barrier (BSCB) is shown to accelerate gathering of noxious blood-derived components in the nervous system, leading to secondary neurodegenerative damages. SCI activates endoplasmic reticulum stress (ER stress), which is considered to evoke secondary damages of neurons and glia. Recent evidence indicates that Dl-3-n-butylphthalide (NBP) has the neuroprotective effect in ischaemic brain injury, but whether it has protective effects on SCI or not is largely unclear. Here, we show that NBP prevented BSCB disruption after SCI via inhibition of ER stress. Following a moderate contusion injury of the T9 level of spinal cord, NBP was administered by oral gavage and further treated once a day. NBP significantly attenuated BSCB permeability and breakdown of adherens junction (AJ) and tight junction (TJ) proteins, then improved locomotion recovery following SCI. The protective role of NBP on BSCB disruption is associated with the restrain of ER stress caused by SCI. Furthermore, NBP considerably constrained the expression of ER stress-associated proteins and degradation of TJ and AJ in human brain microvascular endothelial cells (HBMECs) treated with TG. In conclusion, our results indicate that ER stress is associated with the disruption of BSCB integrity after injury, NBP attenuates BSCB disruption via inhibiting ER stress and improve functional recovery following SCI.


American Journal of Translational Research | 2016

Phenylbutyrate prevents disruption of blood-spinal cord barrier by inhibiting endoplasmic reticulum stress after spinal cord injury.

Yulong Zhou; Binbin Zheng; Sipin Zhu; Hongxue Shi; Hongyu Zhang; Zhouguang Wang; Xiaojie Wei; Daqing Chen; Xiaokun Li; Hua-Zi Xu; Jian Xiao

Collaboration


Dive into the Yulong Zhou's collaboration.

Top Co-Authors

Avatar

Jian Xiao

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Hua-Zi Xu

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Hongyu Zhang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Binbin Zheng

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zili He

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Fenzan Wu

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Jiawei Li

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Sipin Zhu

Wenzhou Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge