Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yumi Hoshino is active.

Publication


Featured researches published by Yumi Hoshino.


Developmental Biology | 2008

Protein kinase B (PKB/Akt) is required for the completion of meiosis in mouse oocytes

Yumi Hoshino; Eimei Sato

Akt, also known as protein kinase B, is implicated in many cellular processes. Akt is phosphorylated at two residues, Thr308 and Ser473. Thr308-phosphorylated Akt is present in pericentriolar materials, while localization of Ser473-phosphorylated Akt was similar to that of microtubules in metaphase oocytes. Spindles were shorter and aberrant in oocytes injected with Thr308- or Ser473-phosphorylated Akt antibodies. Specifically, Thr308- and Ser473-phosphorylated Akts function individually and are both necessary to assemble the metaphase II (MII) spindle. Moreover, the functions of Thr308- and Ser473-phosphorylated Akts differ in MII oocytes. Although oocytes exhibited second polar body (PB2) emission after the injection of a peptide for Thr308, the chromosomal alignment and microtubular organization were aberrant. In contrast, the injection of a peptide for Ser473 caused a failure of PB2 emission. These results suggest that Thr308- and Ser473-phosphorylated Akts are individually involved in fertilization to complete meiosis, including different roles (i.e., Ser473-phosphorylated Akts are involved in PB2 emission, whereas Thr308-phosphorylated Akts regulate the organization of microtubules).


Zygote | 2014

C-type natriuretic peptide inhibits porcine oocyte meiotic resumption

Yuki Hiradate; Yumi Hoshino; Kentaro Tanemura; Eimei Sato

C-type natriuretic peptide (CNP) is a recently identified meiotic inhibitor in mice. However, it has not been investigated in porcine oocytes to date. This study aimed to demonstrate the inhibitory effect of CNP against germinal vesicle breakdown (GVBD) in porcine oocyte meiotic resumption. Immunohistochemical analysis revealed intense natriuretic peptide receptor 2 (NPR2) immunoreactivity in the oocyte surrounded cumulus cells in the follicles. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) analysis showed the expression of npr2 mRNA only in cumulus cells but not in oocytes, suggesting that cumulus cells are the targets of CNP. When cumulus-oocyte complexes (COCs) or denuded oocytes (DOs) were cultured with various concentrations of CNP (10, 50, 100, 500, and 1,000 nM), inhibitory effect was observed in the COC group, but not in the DO group, confirming that CNP indirectly inhibits GVBD via cumulus cells. This evidence is the first indication that the CNP-NPR2 pathway is involved in meiotic arrest in porcine oocytes. Furthermore, we investigated the effect of oocyte-derived paracrine factor (ODPF) on npr2 mRNA expression level in cumulus cells by evaluating changes in mRNA expression in oocytectomised COCs (OXCs) by real-time PCR. A significant decrease in npr2 mRNA expression level was observed in OXCs, whereas mRNA expression level was restored in OXCs with DOs, indicating that ODPF participates in the regulation of npr2 expression in porcine cumulus cells.


Biochemical and Biophysical Research Communications | 2009

Effect of hyaluronan to inhibit caspase activation in porcine granulosa cells.

Woro Anindito Sri Tunjung; Masaki Yokoo; Yumi Hoshino; Yuko Miyake; Akane Kadowaki; Eimei Sato

We studied the ability of hyaluronan (HA) to inhibit apoptosis in porcine granulosa cells. The granulosa layer with cumulus-oocyte complex is cultured in media supplemented with follicle stimulating hormone (FSH) and 4-MU an inhibitor of hyaluronan synthases. The concentration of HA significantly increased after supplemented with FSH, but significantly decreased with 4-MU. CD44, receptor of HA, expressed after cultured with FSH, decreased in addition low concentration of 4-MU, whereas not detected in high concentration of 4-MU, indicating parallel relation between the amount of HA and CD44 expression. The 4-MU treatment also decreased the expression of procaspase-3, -8, -9 suggesting that inhibition of HA synthesis leads to activation of these caspases. Moreover, addition of anti-CD44 antibody decreased the expression of procaspases suggesting that perturbation of HA-CD44 binding leads activation of caspases. Hence, HA has ability to inhibit apoptosis and HA-CD44 binding is important on apoptosis inhibitory mechanism in porcine granulosa cells.


Current Pharmaceutical Design | 2012

Angiogenesis and Microvasculature in the Female Reproductive Organs: Physiological and Pathological Implications

Takashi Shimizu; Yumi Hoshino; Hitoshi Miyazaki; Eimei Sato

The female reproductive organs such as ovary, uterus, and placenta are some of the few adult tissues that exhibit regular intervals of rapid growth, and are highly vascularized and have high rates of blood flow. Angiogenesis is a process of vascular growth that is mainly limited to the reproductive system in healthy adult animals. The development of new blood vessels in the ovary and uterus is essential to guarantee the necessary supply of nutrients and hormones. The genetic and molecular mechanisms that control the development of capillary blood vessels in the reproductive organs are beginning to be elucidated. Reproductive organs contain and produce angiogenic factors which may act alone or in concert to regulate the process of vasculature. Vascular endothelial growth factors (VEGFs) and fibroblast growth factor (FGFs) are key factors for vascular system in the reproductive organs. Recent numerous studies reported several roles of VEGFs and FGFs on ovarian and uterine functions. In this review, we focus on the involvement of VEGFs and FGFs as angiogenic factors on reproductive organs and vascular therapy for diseases of reproductive organs using anti-angiogenic agents.


Reproductive Biomedicine Online | 2010

Akt expression in mouse oocytes matured in vivo and in vitro

Sandra Cecconi; Gianna Rossi; Adriana Santilli; Leonardo Di Stefano; Yumi Hoshino; Eimei Sato; Maria Grazia Palmerini; Guido Macchiarelli

To improve developmental competence of in vitro matured oocytes, culture medium can be supplemented with hypoxanthine (Hx) and FSH or epidermal growth factor (EGF) to trigger the activation of essential signalling pathways regulating meiotic resumption and progression. Since the serine/threonine kinase, Akt, contributes to the regulation of the meiotic cell cycle, this study analysed its expression level and localization at the meiotic spindle in oocytes matured in vivo or in vitro in the presence of Hx-FSH or Hx-EGF. Independently of culture conditions adopted, Akt mRNA concentration did not vary from germinal vesicle to metaphase I (MI), while at MII a significant decrease in Akt1 mRNA concentration was recorded in oocytes matured in vivo and in those stimulated by Hx-EGF (P < 0.05). Phoshorylated Akt protein content was similar in the different groups of MI oocytes, but it decreased at MII in oocytes matured either in vivo or in vitro with Hx-EGF. Ser-473-phosphorylated Akt was localized uniformly to the meiotic spindle in more than 90% of oocytes. These results indicate that, in mouse oocytes, Akt expression is differentially regulated during in vivo and in vitro maturation and suggest that EGF could be a positive modulator, even stronger than FSH, of oocyte meiotic maturation.


Molecular Reproduction and Development | 2013

Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice.

Yuhei Kogasaka; Yumi Hoshino; Yuuki Hiradate; Kentaro Tanemura; Eimei Sato

Mammalian target of rapamycin (mTOR), a Ser/Thr protein kinase, is the catalytic component of two distinct signaling complexes, mTOR‐raptor complex (mTORC1) and mTOR‐rictor complex (mTORC2). Recently, studies have demonstrated mitosis‐specific roles for mTORC1, but the functions and expression dynamics of mTOR complexes during meiotic maturation remain unclear. In the present study, to evaluate the roles of respective mTOR complexes in maternal meiosis and compare them with those in mitosis, we sought to elucidate the spatiotemporal immunolocalization of mTOR, the kinase‐active Ser2448‐ and Ser2481‐phosphorylated mTOR, and raptor and rictor during cumulus‐cell mitosis and oocyte meiotic maturation in mice. mTOR principally accumulated around the chromosomes and on the spindle. Phosphorylated mTOR (Ser2448 and Ser2481) exhibited elevated fluorescence intensities in the cytoplasm and punctate localization adjacent to the chromosomes, on the spindle poles, and on the midbody during mitotic and meiotic maturation, suggesting functional homology of mTOR between the two cell division systems, despite their mechanistically distinctive spindles. Raptor colocalized with mTOR during both types of cell division, indicating that mTORC1 is predominantly associated with these events. Mitotic rictor uniformly distributed through the cytoplasm, and meiotic rictor localized around the spindle poles of metaphase‐I oocytes, suggesting functional divergence of mTORC2 between mitosis and female meiosis. Based on the general function of mTORC2 in the organization of the actin cytoskeleton, we propose that mTORC1 controls spindle function during mitosis and meiosis, while mTORC2 contributes to actin‐dependent asymmetric division during meiotic maturation in mice. Mol. Reprod. Dev. 80: 334–348, 2013.


Animal Science Journal | 2013

L‐carnitine improves hydrogen peroxide‐induced impairment of nuclear maturation in porcine oocytes

Takako Yazaki; Yuki Hiradate; Yumi Hoshino; Kentaro Tanemura; Eimei Sato

We investigated the effect of oxidative stress induced by hydrogen peroxide (H2 O2 ) on lipid peroxide (LPO) level and nuclear maturation in porcine oocytes cultured with or without cumulus cells. After 22 h of pre-culture, oocytes with attached cumulus cells (COC group) or denuded oocytes (DO group) were cultured with H2 O2 , and intra-oocyte H2 O2 and LPO levels were quantitatively analyzed using immunofluorescence. This is the first report evaluating LPO levels in porcine oocytes. After H2 O2 supplementation, the DO group showed severe accumulation of H2 O2 and LPO in the oocytes. Similarly, while inhibition of progression of nuclear maturation was observed in both groups, the effect was more severe in the DO group. These results demonstrate that cumulus cells reduce the accumulation of H2 O2 stress in oocytes. Furthermore, we attempted to reduce the oxidative stress by H2 O2 with L-carnitine, a H2 O2 scavenger. L-carnitine decreased H2 O2 and LPO levels in the oocytes in both groups, and improvement in the progression of impaired nuclear maturation was observed. These effects were different by the presence of cumulus cells. Our results provide that L-carnitine is useful for alleviating H2 O2 -induced oxidative stress by reducing LPO levels and improving the progression of nuclear maturation.


PLOS ONE | 2013

Incorporation of phosphatase inhibitor in culture prompts growth initiation of isolated non-growing oocytes.

Kanako Morohaku; Yumi Hoshino; Hiroshi Sasada; Eimei Sato

In vitro folliculogenesis of primordial and early preantral follicles is necessary for increment of reproductive efficiency in domestic animals, humans and endangered species. Recent study in phosphatase and tensin homolog (Pten) -knockout mice has revealed that this phosphatase acts as an inhibitory factor in follicle activation of primordial pool with the resultant inhibition of oocyte growth. To test in vitro effect of a phosphatase inhibitor on growth initiation of isolated non-growing oocytes in neonatal ovaries, we applied a specific inhibitor (bpV (HOpic)) for PTEN in culturing system. Non-growing oocytes isolated from the ovaries of newborn BDF1 (C57BL/6 × DBA/2) pups were divided to four culture groups. Five days after culture, the oocytes in 14 μmol/l bpV only, 14 μmol/l bpV plus 100 ng/ml Kit Ligand (KL), and 100 ng/ml KL groups showed significantly (P<0.05) growth (19.3±0.55, 25.8±0.53 and 21.6±0.29 μm, respectively) compared with that of the control (no additive) (16.9±0.53 μm). In addition, western blotting in those groups showed enhanced expression of phosphorylated Akt. In conclusion, we clearly demonstrate that isolated non-growing oocytes develop in phosphatase inhibitor, especially to PTEN, incorporated culturing system, and show first as we know that oocytes with zona Pellucidae can be obtained in vitro from isolated non-growing oocytes.


Zygote | 2009

Development and spindle formation in rat somatic cell nuclear transfer (SCNT) embryos in vitro using porcine recipient oocytes.

Atsushi Sugawara; Satoshi Sugimura; Yumi Hoshino; Eimei Sato

Cloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.


Zygote | 2016

Comparison of the effects of BPA and BPAF on oocyte spindle assembly and polar body release in mice.

Kei Nakano; Manami Nishio; Norio Kobayashi; Yuuki Hiradate; Yumi Hoshino; Eimei Sato; Kentaro Tanemura

Bisphenol AF (BPAF), a homolog of bisphenol A (BPA), is a widely used environmental chemical that has adverse effects on reproduction. The aim of this study was to analyse the effects of BPA and BPAF exposure on oocyte maturation in vitro. Oocytes were cultured in the presence of BPA or BPAF (2, 20, 50 or 100 μg/ml) for 18 h. At concentrations of 50 and 100 μg/ml, BPA and BPAF inhibited oocyte maturation, with BPAF treatment causing a sharp decrease in the number of oocytes reaching maturity. Oocytes were exposed to BPA or BPAF at 2 μg/ml and cultured for different durations (6, 9, 12, 15 or 18 h). Both BPAF and BPA caused a cell cycle delay under these conditions. Oocytes cultured in the presence of BPA or BPAF (50 μg/ml) for 21 h were tested for the localization of α-tubulin and MAD2 using immunofluorescence. High concentrations of BPAF induced cell cycle arrest through the activation of the spindle assembly checkpoint. After 12 h of culture in BPAF (50 μg/ml), oocytes were transferred to control medium for 9 h. Only 63.3% oocytes treated in this manner progressed to metaphase II (MII). Oocytes exposed to high doses of BPA experienced a cell cycle delay, but managed to progress to MII when the culture period was prolonged. In addition, MAD2 was localized in the cytoplasm of these oocytes. In conclusion, both BPAF and BPA exposure affected oocyte maturation, however BPAF and BPA have differential effects on SAC activity.

Collaboration


Dive into the Yumi Hoshino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge