Yumi Matsuda
Niigata University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yumi Matsuda.
PLOS ONE | 2015
Mayuka Nakajima; Kei Arimatsu; Tamotsu Kato; Yumi Matsuda; Takayoshi Minagawa; Naoki Takahashi; Hiroshi Ohno; Kazuhisa Yamazaki
Although periodontitis has been implicated as a risk factor for various systemic diseases, the precise mechanisms by which periodontitis induces systemic disease remain to be elucidated. We have previously revealed that repeated oral administration of Porphyromonas gingivalis elicits endotoxemia via changes in the gut microbiota of the ileum, and thereby induces systemic inflammation and insulin resistance. However, it is not clear to what extent a single administration of P. gingivalis could affect gut microbiota composition, gut barrier function, and subsequent influx of gut microbiota into the liver. Therefore, in the present study, C57BL/6 mice were orally administered P. gingivalis (strain W83) once and compared to sham-inoculated mice. The phylogenetic structure and diversity of microbial communities in the gut and liver were analyzed by pyrosequencing the 16S ribosomal RNA genes. Serum endotoxin activity was determined by a Limulus amebocyte lysate test. Gene expression in the intestine and expression of 16S rRNA genes in the blood and liver were examined by quantitative polymerase chain reaction. Administration of P. gingivalis significantly altered gut microbiota, with an increased proportion of phylum Bacteroidetes, a decreased proportion of phylum Firmicutes, and increased serum endotoxin levels. In the intestinal tissues, gene expression of tjp-1 and occludin, which are involved in intestinal permeability, were downregulated. Higher amounts of bacterial DNA were detected in the liver of infected mice. Importantly, changes in gut microbiota preceded systemic inflammatory changes. These results further support the idea that disturbance of the gut microbiota composition by orally derived periodontopathic bacteria may be a causal mechanism linking periodontitis and systemic disease.
Scientific Reports | 2017
Keisuke Sato; Naoki Takahashi; Tamotsu Kato; Yumi Matsuda; Mai Yokoji; Miki Yamada; Takako Nakajima; Naoki Kondo; Naoto Endo; Reiko Yamamoto; Yuichiro Noiri; Hiroshi Ohno; Kazuhisa Yamazaki
Porhyromonas gingivalis, a causative bacterium of periodontitis, is implicated in the etiology of rheumatoid arthritis (RA), mainly because of expressing peptidyl arginine deiminase (PAD) that generates RA-related autoantigens. However, compared with other periodontopathic bacteria, the precise role of P. gingivalis in RA is largely unknown. We found that orally administered P. gingivalis changed the gut microbiome with concomitant elevation of serum endotoxin and inflammatory markers, and impairment of the gut barrier function. Based on findings showing a relationship between gut microbiota and RA, we investigated whether the change of gut microbiota induced by P. gingivalis and Prevotella intermedia, another periodontopathic bacterium without PAD, is associated with collagen-induced arthritis (CIA). DBA/1J mice were orally administered with or without bacteria followed by induction of CIA. P. gingivalis, but not P. intermedia, administration significantly aggravated arthritis with increased interleukin-17 levels in sera and culture supernatants, increased Th17 cell proportions among mesenteric lymphocytes, and a significant change in the gut microbiome. However, P. gingivalis administration did not elevate the level of anti-citrullinated protein antibody. These results suggest a unique role of P. gingivalis in the link between periodontitis and RA by affecting the gut immune system and the gut microbiota composition.
Journal of Periodontal Research | 2016
Yumi Matsuda; T. Kato; Naoki Takahashi; Mayuka Nakajima; Kei Arimatsu; Takayoshi Minagawa; Keisuke Sato; H. Ohno; Kazuhisa Yamazaki
BACKGROUND AND OBJECTIVES Our previous study demonstrated using an oral gavage model that Porphyromonas gingivalis could induce various inflammatory changes linked to periodontitis-associated systemic diseases by altering gut microbiota. A ligature-induced periodontitis model is similar to human periodontitis in various aspects: in both cases, alveolar bone resorption depends on oral bacterial load, and gingival tissue becomes infiltrated with inflammatory cells. Therefore, this model may be suitable for the analysis of bacterial burden and gingival tissue inflammation with changes related to systemic diseases. MATERIAL AND METHODS Periodontal tissue destruction was induced by a 2 wk ligature placement around the bilateral maxillary second molar. We analyzed the expression profile of various genes in several tissues, levels of systemic inflammatory markers and induction of insulin resistance. In addition, we studied changes in gut microbiota composition and bacterial load in the oral cavity. RESULTS Two weeks after ligature placement gingival inflammation was significantly induced with a disrupted gingival epithelial barrier and alveolar bone resorption accompanied by increased bacterial burden in the oral cavity. Gene expression analysis of the gingival tissue of ligated mice demonstrated that interleukin (Il)1b was significantly elevated and Il6 and Il17a tended to be higher in ligated mice than in untreated mice. Although serum IL-6 was significantly elevated and serum amyloid A tended to be higher in ligated compared to untreated mice, endotoxin levels did not differ between the two groups. Among the genes whose expressions are closely related to glucose and lipid metabolisms, only phosphoenolpyruvate carboxykinase 1 (Pck1) and acetyl-coenzyme A carboxylase alpha (Acaca) showed significant changes following ligature placement in the liver, with the former upregulated and the latter downregulated. However, insulin sensitivity did not change following ligature placement. Furthermore, ligature placement weakly affected the composition of gut microbiota and gene expression in the intestines. CONCLUSION The results suggest that increased oral commensals and gingival inflammation have limited roles in the pathological changes to adipose and liver tissues, which are important organs whose dysfunctions contribute to the development of periodontitis-related systemic diseases.
Scientific Reports | 2016
Naoki Takahashi; Yumi Matsuda; Keisuke Sato; Petrus R. de Jong; Samuel Bertin; Koichi Tabeta; Kazuhisa Yamazaki
The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP.
Journal of Dental Research | 2014
Naoki Takahashi; Yumi Matsuda; H. Yamada; Koichi Tabeta; T. Nakajima; Shumei Murakami; Kazuhisa Yamazaki
Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca2+ levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation.
BMC Complementary and Alternative Medicine | 2016
Mayuka Nakajima; Kei Arimatsu; Takayoshi Minagawa; Yumi Matsuda; Keisuke Sato; Naoki Takahashi; Takako Nakajima; Kazuhisa Yamazaki
BackgroundPeriodontitis has been implicated as a risk factor for metabolic disorders associated with insulin resistance. Recently, we have demonstrated that orally administered Porphyromonas gingivalis, a representative periodontopathic bacterium, induces endotoxemia via reduced gut barrier function coupled with changes in gut microbiota composition, resulting in systemic inflammation and insulin resistance. Propolis, a resinous substance collected by honeybees from leaf buds and cracks in the bark of various plants, can positively affect metabolic disorders in various experimental models. In this study, we thus aimed to clarify the effect of propolis on impaired glucose and lipid metabolism induced by P. gingivalis administration.MethodsEight-week-old male C57BL/6 mice were orally administered P. gingivalis strain W83, propolis ethanol extract powder with P. gingivalis, or vehicle. We then analyzed the expression profile of glucose and lipid metabolism-related genes in the liver and adipose tissues. Serum endotoxin levels were also evaluated by a limulus amebocyte lysate test. In addition, we performed histological analysis of the liver and quantified alveolar bone loss by measuring the root surface area on the lower first molar.ResultsOral administration of P. gingivalis induced downregulation of genes that improve insulin sensitivity in adipose tissue (C1qtnf9, Irs1, and Sirt1), but upregulation of genes associated with lipid droplet formation and gluconeogenesis (Plin2, Acox, and G6pc). However, concomitant administration of propolis abrogated these adverse effects of P. gingivalis. Consistent with gene expression, histological analysis showed that administered propolis suppressed hepatic steatosis induced by P. gingivalis. Furthermore, propolis inhibited the elevation of serum endotoxin levels induced by P. gingivalis administration. Contrary to the systemic effects, propolis had no beneficial effect on alveolar bone loss.ConclusionThese results suggest that administration of propolis may be effective in suppressing periodontopathic bacteria-induced metabolic changes that increase the risk of various systemic diseases.
PLOS ONE | 2014
Takamasa Kayama; Hidetoshi Yamashita; Akira Fukao; Isao Kubota; Takeo Kato; Chifumi Kitanaka; Shinya Sato; Yoshiyuki Ueno; Tsuneo Konta; Yoko Shibata; Tetsu Watanabe; Shuichi Abe; Takuya Miyamoto; Sumito Inoue; Takehiko Miyashita; Kazunobu Ichikawa; Tetsuro Shishido; Takanori Arimoto; Hiroki Takahashi; Satoshi Nishiyama; Ami Ikeda; Makoto Daimon; Toru Kawanami; Manabu Wada; Shigeki Arawaka; Hidetoshi Oizumi; Katsuro Kurokawa; Shingi Susa; Yuichi Katou; Wataru Kameda
For forty-three clinical test values presumably associated to common complex human diseases, we carried out a genome-wide association study using 600K SNPs in a general Japanese population of 1,639 individuals (1,252 after quality control procedures) drawn from a regional cohort, followed by a replication study for statistically significant SNPs (p = 1.95×10−9–8.34×10−39) using an independent population of 1,671 from another cohort. In this single two-stage study, we newly found strong and robust associations of common variants at the ABO histo-blood glycosyltransferase locus in 9q32 with the plasma levels of pancreatic lipase (P-LIP), in addition to successful confirmation of the known ABO association of angiotensin converting enzyme (ACE) independent of the ACE1 gene in 17q23.2 with the ACE level. Our results are compatible with the previously reported association between the ABO gene and pancreatic cancer, and show that the effect of these common variants at the ABO locus on the P-LIP and ACE levels is largely opposing and pleiotropic.
Scientific Reports | 2018
Miki Yamada; Naoki Takahashi; Yumi Matsuda; Keisuke Sato; Mai Yokoji; Benso Sulijaya; Tomoki Maekawa; Tatsuo Ushiki; Yoshikazu Mikami; Manabu Hayatsu; Yusuke Mizutani; Shigenobu Kishino; Jun Ogawa; Makoto Arita; Koichi Tabeta; Takeyasu Maeda; Kazuhisa Yamazaki
Several studies have demonstrated the remarkable properties of microbiota and their metabolites in the pathogenesis of several inflammatory diseases. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a bioactive metabolite generated by probiotic microorganisms during the process of fatty acid metabolism, has been studied for its protective effects against epithelial barrier impairment in the intestines. Herein, we examined the effect of HYA on gingival epithelial barrier function and its possible application for the prevention and treatment of periodontal disease. We found that GPR40, a fatty acid receptor, was expressed on gingival epithelial cells; activation of GPR40 by HYA significantly inhibited barrier impairment induced by Porphyromonas gingivalis, a representative periodontopathic bacterium. The degradation of E-cadherin and beta-catenin, basic components of the epithelial barrier, was prevented in a GPR40-dependent manner in vitro. Oral inoculation of HYA in a mouse experimental periodontitis model suppressed the bacteria-induced degradation of E-cadherin and subsequent inflammatory cytokine production in the gingival tissue. Collectively, these results suggest that HYA exerts a protective function, through GPR40 signaling, against periodontopathic bacteria-induced gingival epithelial barrier impairment and contributes to the suppression of inflammatory responses in periodontal diseases.
Scientific Reports | 2017
Koichi Tabeta; Xin Du; Kei Arimatsu; Mai Yokoji; Naoki Takahashi; Norio Amizuka; Tomoka Hasegawa; Karine Crozat; Tomoki Maekawa; Sayuri Miyauchi; Yumi Matsuda; Takako Ida; Masaru Kaku; Kasper Hoebe; Kinji Ohno; Hiromasa Yoshie; Kazuhisa Yamazaki; Eva Marie Y Moresco; Bruce Beutler
GU-AG consensus sequences are used for intron recognition in the majority of cases of pre-mRNA splicing in eukaryotes. Mutations at splice junctions often cause exon skipping, short deletions, or insertions in the mature mRNA, underlying one common molecular mechanism of genetic diseases. Using N-ethyl-N-nitrosourea, a novel recessive mutation named seal was produced, associated with fragile bones and susceptibility to fractures (spine and limbs). A single nucleotide transversion (T → A) at the second position of intron 36 of the Col1a1 gene, encoding the type I collagen, α1 chain, was responsible for the phenotype. Col1a1seal mRNA expression occurred at greatly reduced levels compared to the wild-type transcript, resulting in reduced and aberrant collagen fibers in tibiae of seal homozygous mice. Unexpectedly, splicing of Col1a1seal mRNA followed the normal pattern despite the presence of the donor splice site mutation, likely due to the action of a putative intronic splicing enhancer present in intron 25, which appeared to function redundantly with the splice donor site of intron 36. Seal mice represent a model of human osteogenesis imperfecta, and reveal a previously unknown mechanism for splicing “rescue.”
Oral Diseases | 2018
Yumi Matsuda; Takayoshi Minagawa; Takafumi Okui; Kazuhisa Yamazaki