Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yumiko Ikeda is active.

Publication


Featured researches published by Yumiko Ikeda.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Reversal of hippocampal neuronal maturation by serotonergic antidepressants

Katsunori Kobayashi; Yumiko Ikeda; Atsushi Sakai; Nobuyuki Yamasaki; Eisuke Haneda; Tsuyoshi Miyakawa; Hidenori Suzuki

Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Here we show a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as “dematuration” of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT4 receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT4 receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT4 receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development.


Schizophrenia Research | 2008

Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia

Yumiko Ikeda; Noriaki Yahata; Itsuo Ito; Masatoshi Nagano; Tomoko Toyota; Takeo Yoshikawa; Yoshiro Okubo; Hidenori Suzuki

Neurotrophic factors (NFs) play a pivotal role in the development of the central nervous system. They are thus also suspected of being involved in the etiology of schizophrenia. Previous studies reported a decreased level of serum brain-derived neurotrophic factor (BDNF) in schizophrenia, whereas the association of epidermal growth factor (EGF) with this illness remains controversial. Using a two-site enzyme immunoassay, we conducted the simultaneous measurement of serum BDNF and EGF levels in a group of patients with chronic schizophrenia (N=74) and a group of normal controls matched in age, body mass index, smoking habit and sex (N=87). We found that, compared to normal controls, patients with chronic schizophrenia exhibited lower serum levels of both BDNF and EGF across all ages examined (21-59 years). The serum levels of BDNF and EGF were negatively correlated in the controls (r=-0.387, P=0.0002) but not in the patients. Clinical parameters such as duration of illness and psychiatric rating scale also showed no robust correlations with the NF levels. Collectively, these results suggest that pervasive, abnormal signaling of NFs underlies the pathophysiology of chronic schizophrenia.


Anesthesia & Analgesia | 2008

The prolonged analgesic effect of epidural ropivacaine in a rat model of neuropathic pain.

Chiyo Sato; Atsushi Sakai; Yumiko Ikeda; Hidenori Suzuki; Atsuhiro Sakamoto

BACKGROUND:In clinical practice, the analgesic effects of epidurally administered local anesthetics on chronic pain sometimes outlast the duration of drug action expected from their pharmacokinetics. To investigate the underlying mechanisms of this prolonged effect, we examined the effects of ropivacaine, a local anesthetic, on pain-related behavior in a rat model of neuropathic pain. We also analyzed changes in the expression of nerve growth factor (NGF), which is involved in plasticity of the nociceptive circuit after nerve injury. METHODS:In a rat model of neuropathic pain produced by chronic constrictive injury (CCI) of the sciatic nerve, thermal hyperalgesia, and mechanical allodynia were observed from Day 3 after surgery. Ropivacaine or saline was administered through an epidural catheter once a day, every day, and from Days 7–13 after the CCI operation. NGF content was measured in the L4 dorsal root ganglion, the hindpaw skin, the L4/5 dorsal spinal cord, and the sciatic nerve, using enzyme immunoassay. RESULTS:The latency to withdrawal from thermal stimuli on the ipsilateral paw pads of CCI rats was significantly increased 4 days after the beginning of ropivacaine treatment, and thermal hyperalgesia was almost fully relieved. Similarly, mechanical allodynia was partially reduced after ropivacaine treatment. NGF content was increased in the L4 dorsal root ganglion on the ipsilateral, but not the contralateral, side, in CCI rats treated with ropivacaine. CONCLUSION:Repetitive administration of ropivacaine into the epidural space in CCI rats exerts an analgesic effect, possibly by inducing a plastic change in the nociceptive circuit.


The Journal of Neuroscience | 2008

Chronic Fluoxetine Bidirectionally Modulates Potentiating Effects of Serotonin on the Hippocampal Mossy Fiber Synaptic Transmission

Katsunori Kobayashi; Yumiko Ikeda; Eisuke Haneda; Hidenori Suzuki

Selective serotonin reuptake inhibitors (SSRIs) have been used to treat various psychiatric disorders. Although the cellular mechanisms underlying amelioration of particular symptoms are mostly unknown, recent studies have shown critical importance of the dentate gyrus of the hippocampus in behavioral effects of SSRIs in rodents. Here, we show that serotonin potentiates synaptic transmission between mossy fibers, the sole output of the dentate granule cells, and CA3 pyramidal cells in mouse hippocampal slices. This potentiation is mediated by activation of 5-HT4 receptors and intracellular cAMP elevation. A chronic treatment of mice with fluoxetine, a widely used SSRI, bidirectionally modulates the 5-HT-induced potentiation: Fluoxetine enhances the potentiation induced by lower concentrations of serotonin, while attenuates that by the higher concentration, which represents stabilization of synaptic 5-HT action. In contrast to the chronic treatment, an acute application of fluoxetine in slices induces a leftward shift in the dose–response curve of the 5-HT-induced potentiation. Thus, acute and chronic fluoxetine treatments have distinct effects on the serotonergic modulation of the mossy fiber synaptic transmission. Exposure of mice to novel environments induces increases in locomotor activity and hippocampal extracellular 5-HT levels. In mice chronically treated with fluoxetine, the novelty-induced hyperactivity is reduced without significant alterations in home cage activity and motor skills. Our results suggest that the chronic fluoxetine treatment can stabilize the serotonergic modulation of the central synaptic transmission, which may contribute to attenuation of hyperactive behaviors.


Molecular Pain | 2011

A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor-dependent mechanism and astrocytes via a nerve growth factor-independent mechanism in neuropathic pain

Shigeru Toda; Atsushi Sakai; Yumiko Ikeda; Atsuhiro Sakamoto; Hidenori Suzuki

BackgroundLocal anesthetics alleviate neuropathic pain in some cases in clinical practice, and exhibit longer durations of action than those predicted on the basis of the pharmacokinetics of their blocking effects on voltage-dependent sodium channels. Therefore, local anesthetics may contribute to additional mechanisms for reversal of the sensitization of nociceptive pathways that occurs in the neuropathic pain state. In recent years, spinal glial cells, microglia and astrocytes, have been shown to play critical roles in neuropathic pain, but their participation in the analgesic effects of local anesthetics remains largely unknown.ResultsRepetitive epidural administration of ropivacaine reduced the hyperalgesia induced by chronic constrictive injury of the sciatic nerve. Concomitantly with this analgesia, ropivacaine suppressed the increases in the immunoreactivities of CD11b and glial fibrillary acidic protein in the dorsal spinal cord, as markers of activated microglia and astrocytes, respectively. In addition, epidural administration of a TrkA-IgG fusion protein that blocks the action of nerve growth factor (NGF), which was upregulated by ropivacaine in the dorsal root ganglion, prevented the inhibitory effect of ropivacaine on microglia, but not astrocytes. The blockade of NGF action also abolished the analgesic effect of ropivacaine on neuropathic pain.ConclusionsRopivacaine provides prolonged analgesia possibly by suppressing microglial activation in an NGF-dependent manner and astrocyte activation in an NGF-independent manner in the dorsal spinal cord. Local anesthetics, including ropivacaine, may represent a new approach for glial cell inhibition and, therefore, therapeutic strategies for neuropathic pain.


European Journal of Neuroscience | 2006

Locomotor activity correlates with modifications of hippocampal mossy fibre synaptic transmission

Katsunori Kobayashi; Yumiko Ikeda; Hidenori Suzuki

The hippocampus has long been implicated in memory formation. Although accumulating evidence suggests involvement of the hippocampus in other brain functions including locomotor regulation and emotional processes, cellular and synaptic bases underlying these functions remain largely unknown. We here report that environmental manipulations in mice unveiled the association of locomotor activity with the hippocampal mossy fibre (MF) synaptic transmission. Electrophysiological recordings of synaptic responses were made using hippocampal slices prepared from mice whose behaviour had been analysed. Environmental enrichment induced parallel decreases in open‐field locomotor activity and MF synaptic facilitation. Facilitation induced by paired‐pulse stimulation at relatively long intervals (≥200 ms) was selectively reduced while the basal synaptic efficacy and high‐frequency transmission were unaffected. Social isolation caused a change in behaviour in an elevated plus‐maze, but neither the open‐field activity nor the MF synaptic transmission was significantly altered. Effects of dopamine, a neurotransmitter essential for locomotor regulation, on the MF synapse were also examined using these mice. Environmental manipulations did not cause significant changes in potentiation of the MF synaptic transmission induced by dopamine. However, analysis of behavioural and electrophysiological results in individual subjects revealed that locomotor activity negatively correlates with magnitude of the dopamine‐induced potentiation. These results suggest that the MF synapse plays important roles in the regulation of locomotor activity. We propose that the MF synapse can serve as the synaptic model for certain forms of locomotor regulation, with potential importance for investigation of the pathophysiology of psychiatric diseases using animal models.


The International Journal of Neuropsychopharmacology | 2014

In vivo activity of modafinil on dopamine transporter measured with positron emission tomography and ( 18 F)FE-PE2I

Woochan Kim; Amane Tateno; Ryosuke Arakawa; Takeshi Sakayori; Yumiko Ikeda; Hidenori Suzuki; Yoshiro Okubo

Modafinil, a wake-promoting drug used to treat narcolepsy, is a dopamine transporter inhibitor and is said to have very low abuse liability; this, however, is still up for debate. We conducted a dopamine transporter (DAT) occupancy study with modafinil (200 or 300 mg) in ten healthy volunteers using positron emission tomography (PET) with [¹⁸F]FE-PE2I, a new PET radioligand with high affinity and selectivity for the dopamine transporter, to characterize its relation to abuse liability. Mean striatal DAT occupancies were 51.4% at 200 mg and 56.9% at 300 mg. There was a significant correlation between occupancy and plasma concentration, indicating dose dependency of DAT inhibition by modafinil in the striatum, and especially in the nucleus accumbens. This study showed that DAT occupancy by modafinil was close to that of methylphenidate, indicating that modafinil may be near the same level as methylphenidate in relation to abuse liability in terms of dopaminergic transmission.


Neuroscience Research | 2010

Cerebral activation associated with speech sound discrimination during the diotic listening task: An fMRI study

Yumiko Ikeda; Noriaki Yahata; Hidehiko Takahashi; Michihiko Koeda; Kunihiko Asai; Yoshiro Okubo; Hidenori Suzuki

Comprehending conversation in a crowd requires appropriate orienting and sustainment of auditory attention to and discrimination of the target speaker. While a multitude of cognitive functions such as voice perception and language processing work in concert to subserve this ability, it is still unclear which cognitive components critically determine successful discrimination of speech sounds under constantly changing auditory conditions. To investigate this, we present a functional magnetic resonance imaging (fMRI) study of changes in cerebral activities associated with varying challenge levels of speech discrimination. Subjects participated in a diotic listening paradigm that presented them with two news stories read simultaneously but independently by a target speaker and a distracting speaker of incongruent or congruent sex. We found that the voice of distracter of congruent rather than incongruent sex made the listening more challenging, resulting in enhanced activities mainly in the left temporal and frontal gyri. Further, the activities at the left inferior, left anterior superior and right superior loci in the temporal gyrus were shown to be significantly correlated with accuracy of the discrimination performance. The present results suggest that the subregions of bilateral temporal gyri play a key role in the successful discrimination of speech under constantly changing auditory conditions as encountered in daily life.


PLOS ONE | 2013

Corticosterone Facilitates Fluoxetine-Induced Neuronal Plasticity in the Hippocampus

Katsunori Kobayashi; Yumiko Ikeda; Minoru Asada; Hirofumi Inagaki; Tomoyuki Kawada; Hidenori Suzuki

The hippocampal dentate gyrus has been implicated in a neuronal basis of antidepressant action. We have recently shown a distinct form of neuronal plasticity induced by the serotonergic antidepressant fluoxetine, that is, a reversal of maturation of the dentate granule cells in adult mice. This “dematuration” is induced in a large population of dentate neurons and maintained for at least one month after withdrawal of fluoxetine, suggesting long-lasting strong influence of dematuration on brain functioning. However, reliable induction of dematuration required doses of fluoxetine higher than suggested optimal doses for mice (10 to 18 mg/kg/day), which casts doubt on the clinical relevance of this effect. Since our previous studies were performed in naive mice, in the present study, we reexamined effects of fluoxetine using mice treated with chronic corticosterone that model neuroendocrine pathophysiology associated with depression. In corticosterone-treated mice, fluoxetine at 10 mg/kg/day downregulated expression of mature granule cell markers and attenuated strong frequency facilitation at the synapse formed by the granule cell axon mossy fiber, suggesting the induction of granule cell dematuration. In addition, fluoxetine caused marked enhancement of dopaminergic modulation at the mossy fiber synapse. In vehicle-treated mice, however, fluoxetine at this dose had no significant effects. The plasma level of fluoxetine was comparable to that in patients taking chronic fluoxetine, and corticosterone did not affect it. These results indicate that corticosterone facilitates fluoxetine-induced plastic changes in the dentate granule cells. Our finding may provide insight into neuronal mechanisms underlying enhanced responsiveness to antidepressant medication in certain pathological conditions.


Psychiatry and Clinical Neurosciences | 2011

Functional magnetic resonance imaging study on the effects of acute single administration of paroxetine on motivation-related brain activity

Toshiyuki Marutani; Noriaki Yahata; Yumiko Ikeda; Takehito Ito; Manami Yamamoto; Masato Matsuura; Eisuke Matsushima; Yoshiro Okubo; Hidenori Suzuki; Tetsuya Matsuda

Aim:  The aim of the present study was to investigate the effects of acute paroxetine administration on brain activity related to motivation.

Collaboration


Dive into the Yumiko Ikeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michihiko Koeda

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidehiko Takahashi

Nuclear Information and Resource Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge