Yumiko Imai
Akita University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yumiko Imai.
Cell | 2008
Yumiko Imai; Keiji Kuba; G. Greg Neely; Rubina Yaghubian-Malhami; Thomas Perkmann; Geert van Loo; Maria A. Ermolaeva; Ruud A. W. Veldhuizen; Y.H. Connie Leung; Hongliang Wang; Haolin Liu; Yang Sun; Manolis Pasparakis; Manfred Kopf; Christin Mech; Sina Bavari; J. S. Malik Peiris; Arthur S. Slutsky; Shizuo Akira; Malin Hultqvist; Rikard Holmdahl; John M. Nicholls; Chengyu Jiang; Christoph J. Binder; Josef M. Penninger
Summary Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.
Nature | 2005
Yumiko Imai; Keiji Kuba; Shuan Rao; Yi Huan; Feng Guo; Bin Guan; Peng Yang; Teiji Wada; Howard Leong-Poi; Michael A. Crackower; Akiyoshi Fukamizu; Chi-Chung Hui; Lutz Hein; Stefan Uhlig; Arthur S. Slutsky; Chengyu Jiang; Josef M. Penninger
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is a devastating clinical syndrome with a high mortality rate (30–60%) (refs 1–3). Predisposing factors for ARDS are diverse and include sepsis, aspiration, pneumonias and infections with the severe acute respiratory syndrome (SARS) coronavirus. At present, there are no effective drugs for improving the clinical outcome of ARDS. Angiotensin-converting enzyme (ACE) and ACE2 are homologues with different key functions in the renin–angiotensin system. ACE cleaves angiotensin I to generate angiotensin II, whereas ACE2 inactivates angiotensin II and is a negative regulator of the system. ACE2 has also recently been identified as a potential SARS virus receptor and is expressed in lungs. Here we report that ACE2 and the angiotensin II type 2 receptor (AT2) protect mice from severe acute lung injury induced by acid aspiration or sepsis. However, other components of the renin–angiotensin system, including ACE, angiotensin II and the angiotensin II type 1a receptor (AT1a), promote disease pathogenesis, induce lung oedemas and impair lung function. We show that mice deficient for Ace show markedly improved disease, and also that recombinant ACE2 can protect mice from severe acute lung injury. Our data identify a critical function for ACE2 in acute lung injury, pointing to a possible therapy for a syndrome affecting millions of people worldwide every year.
Nature Medicine | 2005
Keiji Kuba; Yumiko Imai; Shuan Rao; Hong Gao; Feng Guo; Bin Guan; Yi Huan; Peng Yang; Yanli Zhang; Wei Deng; Linlin Bao; Binlin Zhang; Guang Liu; Zhong Wang; Mark C. Chappell; Yanxin Liu; Dexian Zheng; Teiji Wada; Arthur S. Slutsky; De-Pei Liu; Chuan Qin; Chengyu Jiang; Josef M. Penninger
During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.
Circulation Research | 2007
Keiji Kuba; Liyong Zhang; Yumiko Imai; Sara Arab; Manyin Chen; Yuichiro Maekawa; Michael Leschnik; Mato Markovic; Julia Schwaighofer; Nadine Beetz; Renata Musialek; G. Greg Neely; Vukoslav Komnenovic; Ursula Kolm; Bernhard Metzler; Romeo Ricci; Hiromitsu Hara; Arabella Meixner; Mai Nghiem; Xin Chen; Fayez Dawood; Kit Man Wong; Eva Cukerman; Akinori Kimura; Lutz Hein; Johann Thalhammer; Peter Liu; Josef M. Penninger
Apelin constitutes a novel endogenous peptide system suggested to be involved in a broad range of physiological functions, including cardiovascular function, heart development, control of fluid homeostasis, and obesity. Apelin is also a catalytic substrate for angiotensin-converting enzyme 2, the key severe acute respiratory syndrome receptor. The in vivo physiological role of Apelin is still elusive. Here we report the generation of Apelin gene–targeted mice. Apelin mutant mice are viable and fertile, appear healthy, and exhibit normal body weight, water and food intake, heart rates, and heart morphology. Intriguingly, aged Apelin knockout mice developed progressive impairment of cardiac contractility associated with systolic dysfunction in the absence of histological abnormalities. We also report that pressure overload induces upregulation of Apelin expression in the heart. Importantly, in pressure overload–induced heart failure, loss of Apelin did not significantly affect the hypertrophy response, but Apelin mutant mice developed progressive heart failure. Global gene expression arrays and hierarchical clustering of differentially expressed genes in hearts of banded Apelin−/y and Apelin+/y mice showed concerted upregulation of genes involved in extracellular matrix remodeling and muscle contraction. These genetic data show that the endogenous peptide Apelin is crucial to maintain cardiac contractility in pressure overload and aging.
Cell | 2013
Masayuki Morita; Keiji Kuba; Akihiko Ichikawa; Mizuho Nakayama; Jun Katahira; Ryo Iwamoto; Tokiko Watanebe; Saori Sakabe; Tomo Daidoji; Shota Nakamura; Ayumi Kadowaki; Takayo Ohto; Hiroki Nakanishi; Ryo Taguchi; Takaaki Nakaya; Makoto Murakami; Yoshihiro Yoneda; Hiroyuki Arai; Yoshihiro Kawaoka; Josef M. Penninger; Makoto Arita; Yumiko Imai
Influenza A viruses are a major cause of mortality. Given the potential for future lethal pandemics, effective drugs are needed for the treatment of severe influenza such as that caused by H5N1 viruses. Using mediator lipidomics and bioactive lipid screen, we report that the omega-3 polyunsaturated fatty acid (PUFA)-derived lipid mediator protectin D1 (PD1) markedly attenuated influenza virus replication via RNA export machinery. Production of PD1 was suppressed during severe influenza and PD1 levels inversely correlated with the pathogenicity of H5N1 viruses. Suppression of PD1 was genetically mapped to 12/15-lipoxygenase activity. Importantly, PD1 treatment improved the survival and pathology of severe influenza in mice, even under conditions where known antiviral drugs fail to protect from death. These results identify the endogenous lipid mediator PD1 as an innate suppressor of influenza virus replication that protects against lethal influenza virus infection.
Cell | 2010
G. Gregory Neely; Keiji Kuba; Anthony Cammarato; Kazuya Isobe; Sabine Amann; Liyong Zhang; Mitsushige Murata; Lisa Elmén; Vaijayanti Gupta; Suchir Arora; Rinku Sarangi; Debasis Dan; Susumu Fujisawa; Takako Usami; Cui ping Xia; Alex C. Keene; Nakissa N. Alayari; Hiroyuki Yamakawa; Ulrich Elling; Christian Berger; Maria Novatchkova; Rubina Koglgruber; Keiichi Fukuda; Hiroshi Nishina; Mitsuaki Isobe; J. Andrew Pospisilik; Yumiko Imai; Arne Pfeufer; Andrew A. Hicks; Peter P. Pramstaller
Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.
American Journal of Respiratory and Critical Care Medicine | 2013
Akihiko Ichikawa; Keiji Kuba; Masayuki Morita; Shinsuke Chida; Hiroyuki Tezuka; Hiromitsu Hara; Takehiko Sasaki; Toshiaki Ohteki; V. Marco Ranieri; Claudia C. dos Santos; Yoshihiro Kawaoka; Shizuo Akira; Andrew D. Luster; Bao Lu; Josef M. Penninger; Stefan Uhlig; Arthur S. Slutsky; Yumiko Imai
RATIONALE Patients who developed acute respiratory distress syndrome (ARDS) after infection with severe respiratory viruses (e.g., severe acute respiratory syndrome-coronavirus, H5N1 avian influenza virus), exhibited unusually high levels of CXCL10, which belongs to the non-ELR (glutamic-leucine-arginine) CXC chemokine superfamily. CXCL10 may not be a bystander to the severe virus infection but may directly contribute to the pathogenesis of neutrophil-mediated, excessive pulmonary inflammation. OBJECTIVES We investigated the contribution of CXCL10 and its receptor CXCR3 axis to the pathogenesis of ARDS with nonviral and viral origins. METHODS We induced nonviral ARDS by acid aspiration and viral ARDS by intratracheal influenza virus infection in wild-type mice and mice deficient in CXCL10, CXCR3, IFNAR1 (IFN-α/β receptor 1), or TIR domain-containing adaptor inducing IFN-β (TRIF). MEASUREMENTS AND MAIN RESULTS We found that the mice lacking CXCL10 or CXCR3 demonstrated improved severity and survival of nonviral and viral ARDS, whereas mice that lack IFNAR1 did not control the severity of ARDS in vivo. The increased levels of CXCL10 in lungs with ARDS originate to a large extent from infiltrated pulmonary neutrophils, which express a unique CXCR3 receptor via TRIF. CXCL10-CXCR3 acts in an autocrine fashion on the oxidative burst and chemotaxis in the inflamed neutrophils, leading to fulminant pulmonary inflammation. CONCLUSIONS CXCL10-CXCR3 signaling appears to be a critical factor for the exacerbation of the pathology of ARDS. Thus, the CXCL10-CXCR3 axis could represent a prime therapeutic target in the treatment of the acute phase of ARDS of nonviral and viral origins.
Current Opinion in Pharmacology | 2006
Keiji Kuba; Yumiko Imai; Josef M. Penninger
The renin-angiotensin system (RAS) plays a key role in maintaining blood pressure homeostasis, as well as fluid and salt balance. Angiotensin II, a key effector peptide of the system, causes vasoconstriction and exerts multiple biological functions. Angiotensin-converting enzyme (ACE) plays a central role in generating angiotensin II from angiotensin I, and capillary blood vessels in the lung are one of the major sites of ACE expression and angiotensin II production in the human body. The RAS has been implicated in the pathogenesis of pulmonary hypertension and pulmonary fibrosis, both commonly seen in chronic lung diseases such as chronic obstructive lung disease. Recent studies indicate that the RAS also plays a critical role in acute lung diseases, especially acute respiratory distress syndrome (ARDS). ACE2, a close homologue of ACE, functions as a negative regulator of the angiotensin system and was identified as a key receptor for SARS (severe acute respiratory syndrome) coronavirus infections. In the lung, ACE2 protects against acute lung injury in several animal models of ARDS. Thus, the RAS appears to play a critical role in the pathogenesis of acute lung injury. Indeed, increasing ACE2 activity might be a novel approach for the treatment of acute lung failure in several diseases.
Journal of Immunology | 2003
Marc de Perrot; Kevin J. Young; Yumiko Imai; Mingyao Liu; Thomas K. Waddell; Stefan Fischer; Li Zhang; Shaf Keshavjee
Leukocytes have been implicated in ischemia-reperfusion (IR) injury of the lung, but the individual role of T cells has not been explored. Recent evidence in mice suggests that T cells may play a role in IR injury. Using a syngeneic (Lewis to Lewis) rat lung transplant model, we observed that recipient CD4+ T cells infiltrated lung grafts within 1 h of reperfusion and up-regulated the expression of CD25 over the ensuing 12 h. Nude rats (rnu/rnu) and heterozygous rats (rnu/+) were used to determine the role of T cells in IR injury. No significant difference in lung function was observed between nude and heterozygous recipient rats after 2 h of reperfusion. However, after 12 h of reperfusion, recipient nude rats had significantly higher oxygenation and lower peak airway pressure than recipient heterozygous rats. This was associated with significantly lower levels of IFN-γ in transplanted lung tissue of recipient nude rats. Reconstitution of recipient nude rats with T cells from heterozygous rats restored IR injury after 12 h of reperfusion. The effect of T cells was independent of neutrophil recruitment and activation in the transplanted lung. These results demonstrate that recipient T cells are activated and mediate IR injury during lung transplantation in rats.
Journal of Clinical Investigation | 2013
Teruki Sato; Takashi Suzuki; Hiroyuki Watanabe; Ayumi Kadowaki; Akiyoshi Fukamizu; Peter Liu; Akinori Kimura; Hiroshi Ito; Josef M. Penninger; Yumiko Imai; Keiji Kuba
Angiotensin converting enzyme 2 (ACE2) is a negative regulator of the renin-angiotensin system (RAS), catalyzing the conversion of Angiotensin II to Angiotensin 1-7. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardioprotective peptide. While an antagonistic relationship between the RAS and apelin has been proposed, such functional interplay remains elusive. Here we found that ACE2 was downregulated in apelin-deficient mice. Pharmacological or genetic inhibition of angiotensin II type 1 receptor (AT1R) rescued the impaired contractility and hypertrophy of apelin mutant mice, which was accompanied by restored ACE2 levels. Importantly, treatment with angiotensin 1-7 rescued hypertrophy and heart dysfunctions of apelin-knockout mice. Moreover, apelin, via activation of its receptor, APJ, increased ACE2 promoter activity in vitro and upregulated ACE2 expression in failing hearts in vivo. Apelin treatment also increased cardiac contractility and ACE2 levels in AT1R-deficient mice. These data demonstrate that ACE2 couples the RAS to the apelin system, adding a conceptual framework for the apelin-ACE2-angiotensin 1-7 axis as a therapeutic target for cardiovascular diseases.